Global compactness for a class of quasi-linear elliptic problems

被引:11
作者
Mercuri, Carlo [2 ]
Squassina, Marco [1 ]
机构
[1] Univ Verona, Dept Comp Sci, I-37134 Verona, Italy
[2] Tech Univ Eindhoven, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
关键词
EQUATIONS; INEQUALITIES; CONVERGENCE; CALCULUS;
D O I
10.1007/s00229-012-0533-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a global compactness result for Palais-Smale sequences associated with a class of quasi-linear elliptic equations on exterior domains.
引用
收藏
页码:119 / 144
页数:26
相关论文
共 50 条
[41]   Existence and regularity of nonnegative solution of a singular quasi-linear anisotropic elliptic boundary value problem with gradient terms [J].
Xu, Zhonghai ;
Zheng, Jia Shan ;
Feng, Zhenguo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (03) :739-756
[42]   Multiplicity Results for a Class of Asymptotically Linear Elliptic Problems With Resonance and Applications to Problems With Measure Data [J].
Ferrero, Alberto ;
Saccon, Claudio .
ADVANCED NONLINEAR STUDIES, 2010, 10 (02) :433-479
[43]   Multiplicity and Bifurcation of Solutions for a Class of Asymptotically Linear Elliptic Problems on the Unit Ball [J].
Xu, Benlong .
JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
[44]   Multidimensional Nonhomogeneous Quasi-Linear Systems and Their Hamiltonian Structure [J].
Hu, Xin ;
Casati, Matteo .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2024, 20
[45]   ON THE STABILITY AND ASYMPTOTIC BEHAVIOR FOR A QUASI-LINEAR PARABOLIC FLOW [J].
Ma, L., I ;
Shi, Z. I. Z. H. E. N. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (02) :620-633
[46]   The coupling of quasi-linear pitch angle and energy diffusion [J].
Albert, Jay M. .
JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2009, 71 (16) :1664-1668
[47]   Large KAM Tori for Quasi-linear Perturbations of KdV [J].
Berti, Massimiliano ;
Kappeler, Thomas ;
Montalto, Riccardo .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 239 (03) :1395-1500
[48]   HIGHER-ORDER EXPONENTIAL INTEGRATORS FOR QUASI-LINEAR PARABOLIC PROBLEMS. PART II: CONVERGENCE [J].
Gonzalez, Cesareo ;
Thalhammer, Mechthild .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (05) :2868-2888
[49]   Homogenization and correctors of a class of elliptic problems in perforated domains [J].
Chourabi, Imen ;
Donato, Patrizia .
ASYMPTOTIC ANALYSIS, 2015, 92 (1-2) :1-43
[50]   On the existence and multiplicity of solutions for a class of singular elliptic problems [J].
Jalilian, Y. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (06) :664-680