Global compactness for a class of quasi-linear elliptic problems

被引:11
作者
Mercuri, Carlo [2 ]
Squassina, Marco [1 ]
机构
[1] Univ Verona, Dept Comp Sci, I-37134 Verona, Italy
[2] Tech Univ Eindhoven, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
关键词
EQUATIONS; INEQUALITIES; CONVERGENCE; CALCULUS;
D O I
10.1007/s00229-012-0533-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a global compactness result for Palais-Smale sequences associated with a class of quasi-linear elliptic equations on exterior domains.
引用
收藏
页码:119 / 144
页数:26
相关论文
共 50 条
[31]   HIGHER-ORDER EXPONENTIAL INTEGRATORS FOR QUASI-LINEAR PARABOLIC PROBLEMS. PART I: STABILITY [J].
Gonzalez, Cesareo ;
Thalhammer, Mechthild .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (02) :701-719
[32]   Liouville type theorem for quasi-linear elliptic inequality Δpu + uσ ≤ 0 on Riemannian manifolds [J].
Huang, Jia-Cheng .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 428 (01) :12-31
[33]   Distributivity laws for quasi-linear means [J].
Jocic, D. ;
Stajner-Papuga, I .
IRANIAN JOURNAL OF FUZZY SYSTEMS, 2022, 19 (01) :1-11
[34]   Global compactness results for quasilinear elliptic problems with combined critical Sobolev-Hardy terms [J].
Li, Yuanyuan ;
Guo, Qianqiao ;
Niu, Pengcheng .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (04) :1445-1464
[35]   A GLOBAL COMPACTNESS RESULT FOR QUASILINEAR ELLIPTIC PROBLEMS WITH CRITICAL SOBOLEV NONLINEARITIES AND HARDY POTENTIALS ON RN [J].
Jin, Lingyu ;
Wei, Suting .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 2024 (79) :1-23
[36]   Asynchronous global-local non-invasive coupling for linear elliptic problems [J].
El Kerim, Ahmed ;
Gosselet, Pierre ;
Magoules, Frederic .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 406
[37]   Exact Artificial Boundary Conditions for Quasi-Linear Problems in Semi-Infinite Strips [J].
Chen, Yajun ;
Du, Qikui .
JOURNAL OF MATHEMATICS, 2021, 2021
[38]   Combined effects in quasilinear elliptic problems with lack of compactness [J].
Pucci, Patrizia ;
Radulescu, Vicentiu .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2011, 22 (02) :189-205
[39]   Averaging Method for Quasi-Linear Hyperbolic Systems [J].
Levenshtam, V. B. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2023, 30 (04) :552-560
[40]   Existence and regularity of nonnegative solution of a singular quasi-linear anisotropic elliptic boundary value problem with gradient terms [J].
Xu, Zhonghai ;
Zheng, Jia Shan ;
Feng, Zhenguo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (03) :739-756