Global compactness for a class of quasi-linear elliptic problems

被引:11
作者
Mercuri, Carlo [2 ]
Squassina, Marco [1 ]
机构
[1] Univ Verona, Dept Comp Sci, I-37134 Verona, Italy
[2] Tech Univ Eindhoven, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
关键词
EQUATIONS; INEQUALITIES; CONVERGENCE; CALCULUS;
D O I
10.1007/s00229-012-0533-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a global compactness result for Palais-Smale sequences associated with a class of quasi-linear elliptic equations on exterior domains.
引用
收藏
页码:119 / 144
页数:26
相关论文
共 50 条
[21]   LOCAL WELL-POSEDNESS FOR QUASI-LINEAR PROBLEMS: A PRIMER [J].
Ifrim, Mihaela ;
Tataru, Daniel .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 60 (02) :167-194
[22]   On comparison theorems for quasi-linear elliptic inequalities with a special account of the geometry of the domain [J].
Kon'kov, A. A. .
IZVESTIYA MATHEMATICS, 2014, 78 (04) :758-808
[23]   Sufficient conditions for the existence and asymptotic behaviour of solution to a quasi-linear elliptic problem [J].
Covei, Dragos-Patru .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (12) :2637-2647
[24]   GLOBAL COMPACTNESS RESULTS FOR NONLOCAL PROBLEMS [J].
Brasco, Lorenzo ;
Squassina, Marco ;
Yang, Yang .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (03) :391-424
[25]   FOURTH-ORDER COMPACT FINITE DIFFERENCE METHODS AND MONOTONE ITERATIVE ALGORITHMS FOR QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS [J].
Wang, Yuan-Ming .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (02) :1032-1057
[26]   Quasi-linear Venttsel' problems with nonlocal boundary conditions on fractal domains [J].
Lancia, Maria Rosaria ;
Velez-Santiago, Alejandro ;
Vernole, Paola .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 35 :265-291
[27]   Remark on asymptotic behaviors of solutions to a quasi-linear elliptic Dirichlet problem with large diffusion [J].
Zhao, Chunshan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (12) :4140-4144
[28]   The quasi-linear method of fundamental solution applied to transient non-linear Poisson problems [J].
Fallahi, Mahmood ;
Hosami, Mohammad .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2011, 35 (03) :550-554
[29]   Global solutions for quasi-linear hyperbolic-parabolic coupled systems of thermoviscoelasticity [J].
Dharmawardane, P. M. N. ;
Kawashima, S. ;
Shibata, Y. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 405 :76-102
[30]   AN IMPROVED METHOD FOR SOLVING QUASI-LINEAR CONVECTION DIFFUSION PROBLEMS ON A COARSE MESH [J].
Pollock, Sara .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (02) :A1121-A1145