Time-Scale Separation from Diffusion-Mapped Delay Coordinates

被引:63
作者
Berry, T. [1 ]
Cressman, J. R. [2 ,3 ]
Greguric-Ferencek, Z. [2 ,3 ]
Sauer, T. [1 ]
机构
[1] George Mason Univ, Dept Math Sci, Fairfax, VA 22030 USA
[2] George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22030 USA
[3] George Mason Univ, Krasnow Inst Adv Study, Fairfax, VA 22030 USA
来源
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS | 2013年 / 12卷 / 02期
基金
美国国家科学基金会;
关键词
dimension reduction; time-scale separation; delay coordinates; diffusion map; DYNAMICAL-SYSTEMS; FORCED SYSTEMS; EMBEDDINGS; LAPLACIAN; REDUCTION; MANIFOLD; CHAOS; MAPS;
D O I
10.1137/12088183X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It has long been known that the method of time-delay embedding can be used to reconstruct nonlinear dynamics from time series data. A less-appreciated fact is that the induced geometry of time-delay coordinates increasingly biases the reconstruction toward the stable directions as delays are added. This bias can be exploited, using the diffusion maps approach to dimension reduction, to extract dynamics on desired time scales from high-dimensional observed data. We demonstrate the technique on a wide range of examples, including data generated by a model of meandering spiral waves and video recordings of a liquid-crystal experiment.
引用
收藏
页码:618 / 649
页数:32
相关论文
共 34 条
[1]   GENERIC OBSERVABILITY OF DIFFERENTIABLE SYSTEMS [J].
AEYELS, D .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1981, 19 (05) :595-603
[2]  
Arnold L, 1998, Random dynamical systems
[3]  
Barkley D., 1995, Chemical Waves and Patterns, P163
[4]   A dynamical systems approach to spiral wave dynamics [J].
Barkley, Dwight ;
Kevrekidis, Ioannis G. .
CHAOS, 1994, 4 (03) :453-460
[5]   EXTRACTING QUALITATIVE DYNAMICS FROM EXPERIMENTAL-DATA [J].
BROOMHEAD, DS ;
KING, GP .
PHYSICA D, 1986, 20 (2-3) :217-236
[6]   DIFFUSION MAPS, REDUCTION COORDINATES, AND LOW DIMENSIONAL REPRESENTATION OF STOCHASTIC SYSTEMS [J].
Coifman, R. R. ;
Kevrekidis, I. G. ;
Lafon, S. ;
Maggioni, M. ;
Nadler, B. .
MULTISCALE MODELING & SIMULATION, 2008, 7 (02) :842-864
[7]   Diffusion wavelets [J].
Coifman, Ronald R. ;
Maggioni, Mauro .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 21 (01) :53-94
[8]   Diffusion maps [J].
Coifman, Ronald R. ;
Lafon, Stephane .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 21 (01) :5-30
[9]   Diagnosis of spatiotemporal chaos in wave envelopes of a nematic electroconvection pattern [J].
Dangelmayr, G. ;
Acharya, G. ;
Gleeson, J. T. ;
Oprea, I. ;
Ladd, J. .
PHYSICAL REVIEW E, 2009, 79 (04)
[10]  
de Gennes P. G., 1993, The Physics of Liquid Crystals, V2nd ed