On periodic orbits in cotangent bundles of non-compact manifolds

被引:8
作者
van den Berg, J. B. [1 ]
Pasquotto, F. [1 ]
Rot, T. [1 ]
Vandervorst, R. C. A. M. [1 ]
机构
[1] Vrije Univ Amsterdam, Dept Math, Boelelaan 1081A, NL-1081 HV Amsterdam, Netherlands
关键词
Periodic orbits; Weinstein conjecture; Hamiltonian dynamics; free loop space; linking sets; HAMILTONIAN-SYSTEMS; PRESCRIBED ENERGY;
D O I
10.4310/JSG.2016.v14.n4.a6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the existence of periodic orbits on energy hypersurfaces in cotangent bundles of Riemannian manifolds defined by mechanical Hamiltonians. In [14] it was proved that, provided certain geometric assumptions are satisfied, regular mechanical hypersurfaces in R-2n, in particular non-compact ones, contain periodic orbits if one homology group among the top half does not vanish. In the present paper we extend the above mentioned existence result to a class of hypersurfaces in cotangent bundles of Riemannian manifolds with fiat ends.
引用
收藏
页码:1145 / 1173
页数:29
相关论文
共 19 条
[1]  
BENCI V, 1984, ANN I H POINCARE-AN, V1, P401
[2]  
Bolotin S. V., 1978, VESTNIK MOSKOVSKOGO, V1, P72
[3]  
Frauenfelder U., 2005, PREPUBLICATION ORSAY, V387, P129
[4]  
Gluck H., 1983, SEMINAR MINIMAL SUBM, P65
[5]  
Hofer H., 1989, ANN SCUOLA NORM-SCI, V15, P411
[6]  
Klingenberg W., 1978, Grundlehren der Mathematischen Wissenschaften
[7]  
Klingenberg W. P., 1995, De Gruyter Studies in Mathematics, V1
[8]  
Munkres J. R., 1975, Topology: A first course
[9]  
Palais RS., 1963, TOPOLOGY, V2, P299, DOI DOI 10.1016/0040-9383(63)90013-2
[10]  
RABINOWITZ PH, 1978, COMMUN PUR APPL MATH, V31, P31