Characterizations of the Calabi product of hyperbolic affine hyperspheres

被引:31
作者
Hu, Zejun [1 ]
Li, Haizhong [2 ]
Vrancken, Luc [3 ]
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450052, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[3] Univ Valenciennes, LAMATH, ISTV2, F-59313 Valenciennes 9, France
关键词
affine hypersphere; Calabi product; affine hypersurface;
D O I
10.1007/s00025-008-0312-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There exists a well known construction which allows to associate with two hyperbolic affine hyperspheres fi : M-i(ni) -> Rni+1 a new hyperbolic affine hypersphere immersion of I x M-1 x M-2 into Rn1+n2+2. In this paper we deal with the inverse problem: how to determine from properties of the difference tensor whether a given hyperbolic a. ne hypersphere immersion of a manifold M-n -> Rn+1 can be decomposed in such a way.
引用
收藏
页码:299 / 314
页数:16
相关论文
共 20 条
[1]  
BOLTON J, P EDINBURGH IN PRESS
[2]  
Calabi E., 1972, Symposia Mathematica., P19
[3]   SOME PINCHING AND CLASSIFICATION-THEOREMS FOR MINIMAL SUBMANIFOLDS [J].
CHEN, BY .
ARCHIV DER MATHEMATIK, 1993, 60 (06) :568-578
[4]   COMPLETE AFFINE HYPERSURFACES .1. THE COMPLETENESS OF AFFINE METRICS [J].
CHENG, SY ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (06) :839-866
[5]   CONJUGATE CONNECTIONS AND RADON THEOREM IN AFFINE DIFFERENTIAL GEOMETRY [J].
DILLEN, F ;
NOMIZU, K ;
VRANKEN, L .
MONATSHEFTE FUR MATHEMATIK, 1990, 109 (03) :221-235
[6]   CALABI-TYPE COMPOSITION OF AFFINE SPHERES [J].
DILLEN, F ;
VRANCKEN, L .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1994, 4 (04) :303-328
[7]   INTERNAL CHARACTERIZATION OF DISTORTED PRODUCTS [J].
HIEPKO, S .
MATHEMATISCHE ANNALEN, 1979, 241 (03) :209-215
[8]  
HU Z, DIFF GEOM A IN PRESS
[9]   Lorentzian affine hyperspheres with constant affine sectional curvature [J].
Kriele, M ;
Vrancken, L .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (04) :1581-1599
[10]   An extremal class of three-dimensional hyperbolic affine spheres [J].
Kriele, M ;
Vrancken, L .
GEOMETRIAE DEDICATA, 1999, 77 (03) :239-252