Development of rapid method to assess microbial quality of minimally processed pomegranate arils using FTIR

被引:15
作者
Adiani, Vanshika [1 ]
Gupta, Sumit [1 ]
Ambolikar, Rupali [1 ]
Variyar, Prasad S. [1 ,2 ]
机构
[1] Bhabha Atom Res Ctr, Food Technol Div, Bombay 400085, Maharashtra, India
[2] Homi Bhabha Natl Inst, Bombay, Maharashtra, India
来源
SENSORS AND ACTUATORS B-CHEMICAL | 2018年 / 260卷
关键词
FTIR; Microbial quality; Pomegranate; Partial least square regression; Artificial neural networks; QUANTITATIVE DETECTION; SPECTROSCOPY DATA; SPOILAGE; CHEMOMETRICS; PREDICTION; JUICE;
D O I
10.1016/j.snb.2018.01.095
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Fourier transform infrared spectroscopy (FTIR) spectra were correlated with microbial quality of minimally processed pomegranate (Punica granatum) arils stored at 10 degrees C using chemometrics. FTIR data processed in three ways i.e. FTIR spectrum, first derivative for FTIR spectrum and peak integrated data of FTIR spectrum was used as independent variables for preparing regression models by partial Least Square Regression (PLS-R) and artificial neural networks (ANN) for predicting the total viable count (TVC) and yeast and mold count (Y&M). Models built with both ANN and PLS-R using FTIR data demonstrated a high correlation value of R-2 > 0.85. Analysis of PLS-R results suggested the production of alcohols and acids with utilization of sugars during storage. This is a first report demonstrating use of FTIR as a nondestructive rapid method for microbial quality analysis of minimally processed fruits. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:800 / 807
页数:8
相关论文
共 29 条
[1]   SPME-GCMS integrated with chemometrics as a rapid non-destructive method for predicting microbial quality of minimally processed jackfruit (Artocarpus heterophyllus) bulbs [J].
Adiani, Vanshika ;
Gupta, Sumit ;
Padole, Rupali ;
Variyar, Prasad S. ;
Sharma, Arun .
POSTHARVEST BIOLOGY AND TECHNOLOGY, 2014, 98 :34-40
[2]   Rapid qualitative and quantitative detection of beef fillets spoilage based on Fourier transform infrared spectroscopy data and artificial neural networks [J].
Argyri, A. A. ;
Panagou, E. Z. ;
Tarantilis, P. A. ;
Polysiou, M. ;
Nychas, G. -J. E. .
SENSORS AND ACTUATORS B-CHEMICAL, 2010, 145 (01) :146-154
[3]  
Barth M, 2009, FOOD MICROBIOL FOOD, P135, DOI 10.1007/978-1-4419-0826-1_6
[4]   Effect of modified atmosphere packaging and storage temperature on volatile composition and postharvest life of minimally-processed pomegranate arils (cvs. 'Acco' and 'Herskawitz') [J].
Caleb, Oluwafemi J. ;
Opara, Umezuruike Linus ;
Mahajan, Pramod V. ;
Manley, Marena ;
Mokwena, Lucky ;
Tredoux, Andreas G. J. .
POSTHARVEST BIOLOGY AND TECHNOLOGY, 2013, 79 :54-61
[5]  
Cantwell M.I. y., 2002, POSTHARVEST TECHNOLO, P445
[6]   Artificial neural networks (ANN): prediction of sensory measurements from instrumental data [J].
Carvalho, Naiara Barbosa ;
Rodrigues Minim, Valeria Paula ;
dos Santos Navarro Silva, Rita de Cassia ;
Della Lucia, Suzana Maria ;
Minim, Luis Aantonio .
FOOD SCIENCE AND TECHNOLOGY, 2013, 33 (04) :722-729
[7]  
Chen T, 2007, CHEMOMETR INTELL LAB, V87, P59, DOI 10.1016/j.chemolab.2006.09.004
[8]   Early detection of microbial contamination in processed tomatoes by electronic nose [J].
Concina, I. ;
Falasconi, M. ;
Gobbi, E. ;
Bianchi, F. ;
Musci, M. ;
Mattarozzi, M. ;
Pardo, M. ;
Mangia, A. ;
Careri, M. ;
Sberveglieri, G. .
FOOD CONTROL, 2009, 20 (10) :873-880
[9]   Chemical/biochemical detection of spoilage [J].
Dainty, RH .
INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, 1996, 33 (01) :19-33
[10]   An artificial neural network model for prediction of quality characteristics of apples during convective dehydration [J].
Di Scala, Karina ;
Meschino, Gustavo ;
Vega-Galvez, Antonio ;
Lemus-Mondaca, Roberto ;
Roura, Sara ;
Mascheroni, Rodolfo .
FOOD SCIENCE AND TECHNOLOGY, 2013, 33 (03) :411-416