Atomic-Scale Evidence for Potential Barriers and Strong Carrier Scattering at Graphene Grain Boundaries: A Scanning Tunneling Microscopy Study

被引:124
作者
Koepke, Justin C. [1 ,2 ]
Wood, Joshua D. [1 ,2 ,3 ]
Estrada, David [1 ,3 ]
Ong, Zhun-Yong [3 ,4 ]
He, Kevin T. [1 ,2 ]
Pop, Eric [1 ,2 ,3 ]
Lyding, Joseph W. [1 ,2 ,3 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[3] Univ Illinois, Micro & Nanotechnol Lab, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
graphene; CVD; grain boundaries; scanning tunneling microscopy; spectroscopy; scattering; LARGE-AREA; QUANTUM INTERFERENCE; EPITAXIAL GRAPHENE; GRAPHITE; SPECTROSCOPY; GROWTH; FOILS; FILMS;
D O I
10.1021/nn302064p
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We use scanning tunneling microscopy and spectroscopy to examine the electronic nature of grain boundaries (GBs) in polycrystalline graphene grown by chemical vapor deposition (CVD) on Cu foil and transferred to SiO2 substrates. We find no preferential orientation angle between grains, and the GBs are continuous across graphene wrinkles and SiO2 topography. Scanning tunneling spectroscopy shows enhanced empty states tunneling conductance for most of the GBs and a shift toward more n-type behavior compared to the bulk of the graphene. We also observe standing wave patterns adjacent to GBs propagating in a zigzag direction with a decay length of similar to 1 nm. Fourier analysis of these patterns indicates that backscattering and intervalley scattering are the dominant mechanisms responsible for the mobility reduction in the presence of GBs in CVD-grown graphene.
引用
收藏
页码:75 / 86
页数:12
相关论文
共 55 条
[11]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[12]  
Ferry D. K., SHORT RANGE PO UNPUB
[13]   Epitaxial Graphene on Cu(111) [J].
Gao, Li ;
Guest, Jeffrey R. ;
Guisinger, Nathan P. .
NANO LETTERS, 2010, 10 (09) :3512-3516
[14]  
Hamers R.J., 2001, Scanning Probe Microscopy and Spectroscopy: Theory, Techniques, and Applications, V2nd, P59
[15]   DIRECT OBSERVATION OF STANDING-WAVE FORMATION AT SURFACE STEPS USING SCANNING TUNNELING SPECTROSCOPY [J].
HASEGAWA, Y ;
AVOURIS, P .
PHYSICAL REVIEW LETTERS, 1993, 71 (07) :1071-1074
[16]   Why multilayer graphene on 4H-SiC(000(1)over-bar) behaves like a single sheet of graphene [J].
Hass, J. ;
Varchon, F. ;
Millan-Otoya, J. E. ;
Sprinkle, M. ;
Sharma, N. ;
De Heer, W. A. ;
Berger, C. ;
First, P. N. ;
Magaud, L. ;
Conrad, E. H. .
PHYSICAL REVIEW LETTERS, 2008, 100 (12)
[17]   Scanning Tunneling Microscopy Study and Nanomanipulation of Graphene-Coated Water on Mica [J].
He, Kevin T. ;
Wood, Joshua D. ;
Doidge, Gregory P. ;
Pop, Eric ;
Lyding, Joseph W. .
NANO LETTERS, 2012, 12 (06) :2665-2672
[18]   Grains and grain boundaries in single-layer graphene atomic patchwork quilts [J].
Huang, Pinshane Y. ;
Ruiz-Vargas, Carlos S. ;
van der Zande, Arend M. ;
Whitney, William S. ;
Levendorf, Mark P. ;
Kevek, Joshua W. ;
Garg, Shivank ;
Alden, Jonathan S. ;
Hustedt, Caleb J. ;
Zhu, Ye ;
Park, Jiwoong ;
McEuen, Paul L. ;
Muller, David A. .
NATURE, 2011, 469 (7330) :389-+
[19]   Electronic properties of grains and grain boundaries in graphene grown by chemical vapor deposition [J].
Jauregui, Luis A. ;
Cao, Helin ;
Wu, Wei ;
Yu, Qingkai ;
Chen, Yong P. .
SOLID STATE COMMUNICATIONS, 2011, 151 (16) :1100-1104
[20]   Chiral tunnelling and the Klein paradox in graphene [J].
Katsnelson, M. I. ;
Novoselov, K. S. ;
Geim, A. K. .
NATURE PHYSICS, 2006, 2 (09) :620-625