Simulation analysis of quantum confinement and short-channel effects in independent double-gate metal-oxide-semiconductor field-effect transistors

被引:10
作者
Moreau, Mathieu [1 ]
Munteanu, Daniela [1 ]
Autran, Jean-Luc [1 ,2 ]
机构
[1] CNRS, UMR 6242, IM2NP, F-13384 Marseille 13, France
[2] IUF, F-75005 Paris, France
关键词
independent double-gate MOSFETs; short-channel effects; quantum confinement effects; numerical simulation;
D O I
10.1143/JJAP.47.7013
中图分类号
O59 [应用物理学];
学科分类号
摘要
A two-dimensional (2D) numerical simulation code of drain current including self-consistent solving of the Schrodinger and Poisson equators coupled with the drift-diffusion transport equation in double-gate (DG) metal-oxide-semiconductor field-effect transistor (MOSFET) devices has been developed. This code has been used to investigate the operation of independent DG (IDG) MOSFETs compared with classical DG MOSFETs in terms of short-channel effects (SCEs) and carrier quantum confinement. Simulations show that IDG MOSFET operation is different from that of DG MOSFETs due to the presence of a transverse electric field in the first structure that induces significant enhancement of quantum mechanical confinement. This leads to subthreshold performance degradation and to SCE enhancement in IDG MOSFETs compared with DG MOSFETs. We show that. in contrast to DG MOSFETs, quantum confinement effects must be taken into account in IDG MOSFET operation even for thick silicon films (> 10-15 nm).
引用
收藏
页码:7013 / 7018
页数:6
相关论文
共 21 条
[1]  
Autran JL, 2008, J COMPUT THEOR NANOS, V5, P1120
[2]   An analytical subthreshold current model for ballistic quantum-wire double-gate MOS transistors [J].
Autran, JL ;
Munteanu, D ;
Tintori, O ;
Decarre, E ;
Ionescu, AM .
MOLECULAR SIMULATION, 2005, 31 (2-3) :179-183
[3]   Theoretical foundations of the quantum drift-diffusion and density-gradient models [J].
Baccarani, Giorgio ;
Gnani, Elena ;
Gnudi, Antonio ;
Reggiani, Susanna ;
Rudan, Massimo .
SOLID-STATE ELECTRONICS, 2008, 52 (04) :526-532
[4]   Atomic-scale modeling of double-gate MOSFETs using a tight-binding Green's function formalism [J].
Bescond, M ;
Autran, JL ;
Munteanu, D ;
Lannoo, M .
SOLID-STATE ELECTRONICS, 2004, 48 (04) :567-574
[5]   Nanoscale device modeling: the Green's function method [J].
Datta, S .
SUPERLATTICES AND MICROSTRUCTURES, 2000, 28 (04) :253-278
[6]   Quantum-corrected drift-diffusion models for transport in semiconductor devices [J].
de Falco, C ;
Gatti, E ;
Lacaita, AL ;
Sacco, R .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 204 (02) :533-561
[7]   Independently driven DG MOSFETs for mixed-signal circuits: Part I - Quasi-static and nonquasi-static channel coupling [J].
Gen, P ;
Kan, ECC .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2004, 51 (12) :2086-2093
[8]   Impact of high-permittivity dielectrics on speed performances and power consumption in double-gate-based CMOS circuits [J].
Loussier, X. ;
Munteanu, D. ;
Autran, J. L. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2007, 353 (5-7) :639-644
[9]   Impact of Geometrical and Electrical Parameters on Speed Performance Characteristics in Ultimate Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistors [J].
Loussier, Xavier ;
Munteanu, Daniela ;
Autran, Jean-Luc ;
Tintori, Olivier .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2008, 47 (05) :3390-3395
[10]   Demonstration, analysis, and device design considerations for independent DG MOSFETs [J].
Masahara, M ;
Liu, YX ;
Sakamoto, K ;
Endo, K ;
Matsukawa, T ;
Ishii, K ;
Sekigawa, T ;
Yamauchi, H ;
Tanoue, H ;
Kanemaru, S ;
Koike, H ;
Suzuki, E .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2005, 52 (09) :2046-2053