Application of fuzzy - Neuro to model weather parameter variability impacts on electrical load based on long-term forecasting

被引:14
作者
Ali, Danladi [1 ]
Yohanna, Michael [1 ]
Ijasini, Puwu Markus [1 ]
Garkida, Musa Bulus [1 ]
机构
[1] Adamawa State Univ, Dept Pure & Appl Phys, Mubi, Nigeria
关键词
Electrical load; Load forecasting; Fuzzy logic; Back propagation; Neuro-fuzzy; Weather parameter;
D O I
10.1016/j.aej.2016.12.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Long-term load forecasting provides vital information about future load and it helps the power industries to make decision regarding electrical energy generation and delivery. In this work, fuzzy - neuro model is developed to forecast a year ahead load in relation to weather parameter (temperature and humidity) in Mubi, Adamawa State. It is observed that: electrical load increased with increase in temperature and relative humidity does not show notable effect on electrical load. The accuracy of the prediction is obtained at 98.78% with the corresponding mean absolute percentage error (MAPE) of 1.22%. This confirms that fuzzy - neuro is a good tool for load forecasting. (C) 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V.
引用
收藏
页码:223 / 233
页数:11
相关论文
共 20 条
[1]  
[Anonymous], 2012, P WORLD C ENG COMPUT
[2]  
Aslan Y., 2011, Int. J. Tech. Phys. Problems Eng., V3, P87
[3]   SHORT-TERM LOAD FORECASTING USING FUZZY NEURAL NETWORKS [J].
BAKIRTZIS, AG ;
THEOCHARIS, JB ;
KIARTZIS, SJ ;
SATSIOS, KJ .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1995, 10 (03) :1518-1524
[4]  
Bunnoon P., 2011, Int. J. Comput. Elect. Eng., V3, P600
[5]  
Chogumaira E.N., 2011, J ENERGY POWER ENG, V3, P9, DOI DOI 10.4236/EPE.2011.31002
[6]  
Danladi1 A., 2016, NIGERIAN J TECHNOLOG, V35, P562, DOI DOI 10.4314/njt.v35i3.14
[7]  
Filik ÜB, 2011, INT J INNOV COMPUT I, V7, P3545
[8]  
Kumar J.K, 2015, INT J TECH RES APPL, V3, P222
[9]  
Manoj P. P., 2014, INT J RES ENG TECHNO, V3, P322
[10]  
Pal S., 2015, INT J NOVEL RES ELEC, V2, P65