Organosulfate formation in biogenic secondary organic aerosol

被引:539
作者
Surratt, Jason D. [2 ]
Gomez-Gonzalez, Yadian [3 ]
Chan, Arthur W. H. [1 ]
Vermeylen, Reinhilde [3 ]
Shahgholi, Mona [2 ]
Kleindienst, Tadeusz E. [4 ]
Edney, Edward O. [4 ]
Offenberg, John H. [4 ]
Lewandowski, Michael [4 ]
Jaoui, Mohammed
Maenhaut, Willy [5 ]
Claeys, Magda [3 ]
Flagan, Richard C. [1 ,6 ]
Seinfeld, John H. [1 ,6 ]
机构
[1] CALTECH, Dept Chem Engn, Pasadena, CA 91125 USA
[2] CALTECH, Dept Chem, Pasadena, CA 91125 USA
[3] Univ Antwerp, Dept Pharmaceut Sci, BE-2610 Antwerp, Belgium
[4] US EPA, Off Res & Dev, Natl Exposure Lab, Res Triangle Pk, NC 27711 USA
[5] Univ Ghent, Inst Nucl Sci, Dept Analyt Chem, BE-9000 Ghent, Belgium
[6] CALTECH, Dept Environm Sci & Engn, Pasadena, CA 91125 USA
关键词
D O I
10.1021/jp802310p
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Organosulfates of isoprene, alpha-pinene, and beta-pinene have recently been identified in both laboratory-generated and ambient secondary organic aerosol (SOA). In this Study, the mechanism and ubiquity of organosulfate formation in biogenic SOA is investigated by a comprehensive series of laboratory photooxidation (i.e., OH-initiated oxidation) and nighttime oxidation (i.e.,,NO3-initiated oxidation under dark conditions) experiments using nine monoterpenes (alpha-pinene, beta-pinene, d-limonene, l-limonene, alpha-terpinene, gamma-terpinene, terpinolene, Delta(3)-carene, and beta-phellandrene) and three monoterpenes (alpha-pinene, d-limonene, and l-limonene), respectively. Organosulfates were characterized using liquid chromatographic techniques coupled to electrospray ionization combined with both linear ion trap and high-resolution time-of-flight mass spectrometry. Organosulfates are formed only when monoterpenes are oxidized in the presence of acidified sulfate seed aerosol, a result consistent with prior work. Archived laboratory-generated isoprene SOA and ambient filter samples collected from the southeastern U.S. were reexamined for organosulfates. By comparing the tandem mass spectrometric and accurate mass measurements collected for both the laboratory-generated and ambient aerosol, previously uncharacterized ambient organic aerosol components are found to be organosulfates of isoprene, alpha-pinene, beta-pinene, and limonene-like monoterpenes (e.g., myrcene), demonstrating the ubiquity of organosulfate formation in ambient SOA. Several of the organosulfates of isoprene and of the monoterpenes characterized in this study are ambient tracer compounds for the occurrence of biogenic SOA formation under acidic conditions. Furthermore, the nighttime oxidation experiments conducted under highly acidic conditions reveal a viable mechanism for the formation of previously identified nitrooxy organosulfates found in ambient nighttime aerosol samples. We estimate that the organosulfate contribution to the total organic mass fraction of ambient aerosol collected from K-puszta, Hungary, a field site with a similar organosulfate composition as that found in the present study for the southeastern U.S., can be as high as 30%.
引用
收藏
页码:8345 / 8378
页数:34
相关论文
共 94 条
[1]   EFFECTS OF ORGANIC SULFUR-COMPOUNDS ON EXTRACTION AND DETERMINATION OF INORGANIC SULFATE [J].
ALEWELL, C .
PLANT AND SOIL, 1993, 149 (01) :141-144
[2]   Oligomers formed through in-cloud methylglyoxal reactions: Chemical composition, properties, and mechanisms investigated by ultra-high resolution FT-ICR mass spectrometry [J].
Altieri, K. E. ;
Seitzinger, S. P. ;
Carlton, A. G. ;
Turpin, B. J. ;
Klein, G. C. ;
Marshall, A. G. .
ATMOSPHERIC ENVIRONMENT, 2008, 42 (07) :1476-1490
[3]   Products of the gas-phase reactions of O(3P) atoms and O3 with α-pinene and 1,2-dimethyl-1-cyclohexene [J].
Alvarado, A ;
Tuazon, EC ;
Aschmann, SM ;
Atkinson, R ;
Arey, J .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D19) :25541-25551
[4]   Products of the gas phase reactions of the OH radical with α- and β-pinene in the presence of NO [J].
Aschmann, SM ;
Reissell, A ;
Atkinson, R ;
Arey, J .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D19) :25553-25561
[5]   Products of reaction of OH radicals with α-pinene -: art. no. 4191 [J].
Aschmann, SM ;
Atkinson, R ;
Arey, J .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D14) :ACH6-1
[6]   Atmospheric degradation of volatile organic compounds [J].
Atkinson, R ;
Arey, J .
CHEMICAL REVIEWS, 2003, 103 (12) :4605-4638
[7]   PHOTOCHEMICAL SMOG - RATE PARAMETER ESTIMATES AND COMPUTER SIMULATIONS [J].
BALDWIN, AC ;
BARKER, JR ;
GOLDEN, DM ;
HENDRY, DG .
JOURNAL OF PHYSICAL CHEMISTRY, 1977, 81 (25) :2483-2492
[8]   Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions - 2. Dialdehydes, methylglyoxal, and diketones [J].
Barsanti, KC ;
Pankow, JF .
ATMOSPHERIC ENVIRONMENT, 2005, 39 (35) :6597-6607
[9]   Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions - Part 1: aldehydes and ketones [J].
Barsanti, KC ;
Pankow, JF .
ATMOSPHERIC ENVIRONMENT, 2004, 38 (26) :4371-4382
[10]   Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions - Part 3: Carboxylic and dicarboxylic acids [J].
Barsanti, Kelley C. ;
Pankow, James F. .
ATMOSPHERIC ENVIRONMENT, 2006, 40 (34) :6676-6686