Compressive Super-Pixel LiDAR for High-Framerate 3D Depth Imaging

被引:7
作者
Assmann, Andreas [1 ,2 ]
Stewart, Brian [2 ]
Mota, Joao F. C. [1 ]
Wallace, Andrew M. [1 ]
机构
[1] Heriot Watt Univ, EPS, Edinburgh, Midlothian, Scotland
[2] STMicroelect R&D Ltd, Edinburgh, Midlothian, Scotland
来源
2019 7TH IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (IEEE GLOBALSIP) | 2019年
基金
英国工程与自然科学研究理事会;
关键词
Solid-State Arrayed LiDAR; 3D Image Reconstruction; Compressed Sensing; Parallelization;
D O I
10.1109/globalsip45357.2019.8969177
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a new sampling and reconstruction framework for full frame depth imaging using synchronised, programmable laser diode and photon detector arrays. By adopting a measurement scheme that probes the environment with sparse, pseudo-random patterns, our method enables eye safe LiDAR operation, while guaranteeing fast reconstruction of depth images with a high signal-to-noise ratio (SNR). Building up on the observation that certain quantities derived from the photon count histograms are sparse in either the Li-norm or have small total variation (TV), reconstruction is performed via compressed sensing (CS) and takes approximately 30 s per frame. To speed up reconstruction, we further introduce a checkerboard tiling approach (CB-CS) that reduces the processing time to milliseconds per tile, with comparable or even less reconstruction error. Although in our experiments we reconstruct tiles sequentially at a frame rate of similar to 4 Hz, this process is highly parallelizable and has the potential to achieve 1 kHz frame rates.
引用
收藏
页数:5
相关论文
共 18 条
  • [1] [Anonymous], 2016, PROC CVPR IEEE, DOI DOI 10.1109/CVPR.2016.470
  • [2] Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731
  • [3] Stable signal recovery from incomplete and inaccurate measurements
    Candes, Emmanuel J.
    Romberg, Justin K.
    Tao, Terence
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (08) : 1207 - 1223
  • [4] Chhabra Puneet, 2016, 2016 SENS SIGN PROC
  • [5] Compressed sensing
    Donoho, DL
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) : 1289 - 1306
  • [6] Single-pixel imaging via compressive sampling
    Duarte, Marco F.
    Davenport, Mark A.
    Takhar, Dharmpal
    Laska, Jason N.
    Sun, Ting
    Kelly, Kevin F.
    Baraniuk, Richard G.
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (02) : 83 - 91
  • [7] Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems
    Figueiredo, Mario A. T.
    Nowak, Robert D.
    Wright, Stephen J.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2007, 1 (04) : 586 - 597
  • [8] Block-Based Compressed Sensing of Images and Video
    Fowler, James E.
    Mun, Sungkwang
    Tramel, Eric W.
    [J]. FOUNDATIONS AND TRENDS IN SIGNAL PROCESSING, 2010, 4 (04): : 297 - 416
  • [9] Gan L, 2007, PROCEEDINGS OF THE 2007 15TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING, P403
  • [10] Halimi A, 2016, EUR SIGNAL PR CONF, P86, DOI 10.1109/EUSIPCO.2016.7760215