On a posteriori error bounds for approximations of the generalized Stokes problem generated by the Uzawa algorithm

被引:5
作者
Anjam, I. [1 ]
Nokka, M. [1 ]
Repin, S. I. [2 ]
机构
[1] Univ Jyvaskyla, Dept Math Informat Technol, FI-40014 Jyvaskyla, Finland
[2] VA Steklov Math Inst, RU-191024 St Petersburg, Russia
基金
俄罗斯基础研究基金会;
关键词
Navier Stokes equations - Error analysis - Approximation algorithms;
D O I
10.1515/rnam-2012-0018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we derive computable a posteriori error bounds for approximations computed by the Uzawa algorithm for the generalized Stokes problem. We show that for each Uzawa iteration both the velocity error and the pressure error are bounded from above by a constant multiplied by the L-2-norm of the divergence of the velocity. The derivation of the estimates essentially uses a posteriori estimates of the functional type for the Stokes problem.
引用
收藏
页码:321 / 338
页数:18
相关论文
共 14 条
[1]  
[Anonymous], 2002, Journal of Mathematical Sciences
[2]  
[Anonymous], 1976, Zapiski Nauchn. Sem. LOMI
[3]  
[Anonymous], J MATH SCI NY
[4]  
[Anonymous], 1983, AUGMENTED LAGRANGIAN, DOI DOI 10.1016/S0168-2024(08)70028-6
[5]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[6]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[7]   On the domain geometry dependence of the LBB condition [J].
Chizhonkov, EV ;
Olshanskii, MA .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (05) :935-951
[8]   On the LBB condition in the numerical analysis of the Stokes equations [J].
Dobrowolski, M .
APPLIED NUMERICAL MATHEMATICS, 2005, 54 (3-4) :314-323
[9]  
HORGAN CO, 1983, ARCH RATION MECH AN, V82, P165, DOI 10.1007/BF00250935
[10]  
Ladyzhenskaya O A., 1969, The Mathematical Theory of Viscous Incompressible Flow, V2nd ed.