Time-dependent quantum dynamical simulations of C2 condensation under extreme conditions

被引:11
作者
Jakowski, Jacek [1 ]
Irle, Stephan [2 ,3 ]
Morokuma, Keiji [4 ,5 ,6 ]
机构
[1] Natl Inst Computat Sci, Oak Ridge, TN 37831 USA
[2] Nagoya Univ, Inst Adv Res, Nagoya, Aichi 4648602, Japan
[3] Nagoya Univ, Dept Chem, Nagoya, Aichi 4648602, Japan
[4] Emory Univ, Dept Chem, Atlanta, GA 30322 USA
[5] Emory Univ, Cherry L Emerson Ctr Sci Computat, Atlanta, GA 30322 USA
[6] Kyoto Univ, Fukui Inst Fundamental Chem, Sakyo Ku, Kyoto 60068103, Japan
基金
美国国家科学基金会;
关键词
DENSITY-FUNCTIONAL THEORY; CARBON NANOTUBES; METAL-SURFACES; MOLECULES; ELECTRON; GROWTH; FLAME;
D O I
10.1039/c1cp22035g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report theoretical studies of the initial phase of bulk C-2 condensation into carbon nano-structures by means of Born-Oppenheimer and time-dependent quantum mechanical Liouville-von Neumann molecular dynamics based on the density-functional tight-binding (DFTB) framework for electrons. We observe that the time-dependent quantum mechanical approach leads to faster formation of carbon nanostructures than analogous Born-Oppenheimer simulations. Our results suggest that the condensation of bulk carbon is nonadiabatic in nature, with the critical role of electronic stopping as in ion-irradiation of materials. Contrary to time-dependent quantum mechanical simulations, Born-Oppenheimer dynamics incorrectly predict that the short carbon chains obtained from initial reactive collisions between C-2 quickly evaporate, leading to much lower probability of secondary collisions and condensation. We also discuss some deficiencies in Born-Oppenheimer dynamics that lead to unphysical charge polarization and electron transfer.
引用
收藏
页码:6273 / 6279
页数:7
相关论文
共 30 条
[1]   Continuous production of aligned carbon nanotubes: a step closer to commercial realization [J].
Andrews, R ;
Jacques, D ;
Rao, AM ;
Derbyshire, F ;
Qian, D ;
Fan, X ;
Dickey, EC ;
Chen, J .
CHEMICAL PHYSICS LETTERS, 1999, 303 (5-6) :467-474
[3]   NANOCLUSTERS PRODUCED IN FLAMES [J].
DUAN, HM ;
MCKINNON, JT .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (49) :12815-12818
[4]   LARGE-SCALE SYNTHESIS OF CARBON NANOTUBES [J].
EBBESEN, TW ;
AJAYAN, PM .
NATURE, 1992, 358 (6383) :220-222
[5]   Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties [J].
Elstner, M ;
Porezag, D ;
Jungnickel, G ;
Elsner, J ;
Haugk, M ;
Frauenheim, T ;
Suhai, S ;
Seifert, G .
PHYSICAL REVIEW B, 1998, 58 (11) :7260-7268
[6]  
Frisch M.J., 2008, GAUSSIAN DEV VERSION
[7]   CATALYTIC GROWTH OF SINGLE-WALLED NANOTUBES BY LASER VAPORIZATION [J].
GUO, T ;
NIKOLAEV, P ;
THESS, A ;
COLBERT, DT ;
SMALLEY, RE .
CHEMICAL PHYSICS LETTERS, 1995, 243 (1-2) :49-54
[8]   SELF-ASSEMBLY OF TUBULAR FULLERENES [J].
GUO, T ;
NIKOLAEV, P ;
RINZLER, AG ;
TOMANEK, D ;
COLBERT, DT ;
SMALLEY, RE .
JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (27) :10694-10697
[9]   Solid state growth mechanisms for carbon nanotubes [J].
Harris, Peter J. F. .
CARBON, 2007, 45 (02) :229-239
[10]   HELICAL MICROTUBULES OF GRAPHITIC CARBON [J].
IIJIMA, S .
NATURE, 1991, 354 (6348) :56-58