High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%

被引:92
作者
Fafard, S. [1 ,2 ]
Proulx, F. [1 ,2 ]
York, M. C. A. [1 ]
Richard, L. S. [1 ]
Provost, P. O. [1 ,2 ]
Ares, R. [1 ]
Aimez, V. [1 ]
Masson, D. P. [2 ]
机构
[1] Univ Sherbrooke, 3IT, LN2, CNRS UMI 3463, Sherbrooke, PQ J1K 0A5, Canada
[2] Azastra Opto Inc, Ottawa, ON K1W 1G3, Canada
关键词
CELLS;
D O I
10.1063/1.4964120
中图分类号
O59 [应用物理学];
学科分类号
摘要
Photovoltaic power converting III-V semiconductor devices based on the Vertical Epitaxial HeteroStructure Architecture (VEHSA) design have been achieved with up to 20 thin p/n junctions (PT20). Open circuit photovoltages in excess of 23V are measured for a continuous wave monochromatic optical input power of similar to 1 W tuned in the 750 nm-875 nm wavelength range. Conversion efficiencies greater than 60% are demonstrated when the PT20 devices are measured near the peak of their spectral response. Noticeably, the PT20 structure is implemented with its narrowest ultrathin base having a thickness of only 24 nm. In the present study, the spectral response of the PT20 peaks at external quantum efficiency (EQE) of 89%/20 for an input wavelength of 841 nm. We also performed a detailed analysis of the EQE dependence with temperature and for VEHSA structures realised with a varied number of p/n junctions. The systematic study reveals the correlations between the measured conversion efficiencies, the EQE behavior, and the small deviations in the implementation of the optimal designs. Furthermore, we modeled the photovoltage performance of devices designed with thinner bases. For example, we derive that the narrowest subcell of a PT60 structure would have a base as thin as 8 nm, it is expected to still generate an individual subcell photovoltage of 1.14 V, and it will begin to feature 2-dimensional quantum well effects. (C) 2016 Author(s).
引用
收藏
页数:4
相关论文
共 30 条
[1]   Impact of built-in fields and contact configuration on the characteristics of ultra-thin GaAs solar cells [J].
Aeberhard, Urs .
APPLIED PHYSICS LETTERS, 2016, 109 (03)
[2]  
Andreev V, 2003, WORL CON PHOTOVOLT E, P761
[3]   Absorption enhancement through Fabry-Perot resonant modes in a 430 nm thick InGaAs/GaAsP multiple quantum wells solar cell [J].
Behaghel, B. ;
Tamaki, R. ;
Vandamme, N. ;
Watanabe, K. ;
Dupuis, C. ;
Bardou, N. ;
Sodabanlu, H. ;
Cattoni, A. ;
Okada, Y. ;
Sugiyama, M. ;
Collin, S. ;
Guillemoles, J-F. .
APPLIED PHYSICS LETTERS, 2015, 106 (08)
[4]  
Bett A.W., 2008, Photovoltaic Specialists Conference, 2008, P1, DOI DOI 10.1109/PVSC.2008.4922910
[5]   Advances with vertical epitaxial heterostructure architecture (VEHSA) phototransducers for optical to electrical power conversion efficiencies exceeding 50 percent [J].
Fafard, S. ;
Proulx, F. ;
York, M. C. A. ;
Wilkins, M. ;
Valdivia, C. E. ;
Bajcsy, M. ;
Ban, D. ;
Jaouad, A. ;
Bouzazi, B. ;
Ares, R. ;
Aimez, V. ;
Hinzer, K. ;
Masson, D. P. .
PHYSICS, SIMULATION, AND PHOTONIC ENGINEERING OF PHOTOVOLTAIC DEVICES V, 2016, 9743
[6]   Ultrahigh efficiencies in vertical epitaxial heterostructure architectures [J].
Fafard, S. ;
York, M. C. A. ;
Proulx, F. ;
Valdivia, C. E. ;
Wilkins, M. M. ;
Ares, R. ;
Aimez, V. ;
Hinzer, K. ;
Masson, D. P. .
APPLIED PHYSICS LETTERS, 2016, 108 (07)
[7]  
Fafard S., 2016, 2016 IEEE 43 PHOT SP
[8]   Intrinsic radiation tolerance of ultra-thin GaAs solar cells [J].
Hirst, L. C. ;
Yakes, M. K. ;
Warner, J. H. ;
Bennett, M. F. ;
Schmieder, K. J. ;
Walters, R. J. ;
Jenkins, P. P. .
APPLIED PHYSICS LETTERS, 2016, 109 (03)
[9]   Optimal laser wavelength for efficient laser power converter operation over temperature [J].
Hoehn, O. ;
Walker, A. W. ;
Bett, A. W. ;
Helmers, H. .
APPLIED PHYSICS LETTERS, 2016, 108 (24)
[10]   Reconfirmation of the band offsets of InGaP/GaAs quantum wells [J].
Kabi, Sanjib ;
Das, Tapas ;
Biswas, Dipankar .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2010, 42 (08) :2131-2133