A comprehensive review on polymeric hydrogel and its composite: Matrices of choice for bone and cartilage tissue engineering

被引:77
作者
Tran, Huong D. N. [1 ,2 ]
Park, Ki Dong [3 ]
Ching, Yern Chee [4 ]
Cong Huynh [5 ]
Dai Hai Nguyen [2 ,6 ]
机构
[1] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia
[2] Vietnam Acad Sci & Technol, Inst Appl Mat Sci, 01 TL29,Dist 12, Ho Chi Minh City 700000, Vietnam
[3] Ajou Univ, Dept Mol Sci & Technol, Suwon 16499, South Korea
[4] Univ Malaya, Fac Engn, Dept Chem Engn, Kuala Lumpur 50603, Malaysia
[5] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[6] Grad Univ Sci & Technol, Vietnam Acad Sci & Technol, Hanoi 100000, Vietnam
关键词
Hydrogel; Bone; Cartilage; Tissue engineering; Delivery system; Growth factors and cells; MESENCHYMAL STEM-CELL; GROWTH-FACTOR DELIVERY; HYALURONIC-ACID HYDROGELS; RADIOPAQUE EMBOLIC HYDROGELS; LINKED INJECTABLE HYDROGELS; DOUBLE-NETWORK HYDROGELS; CROSS-LINKING DENSITY; CHONDROGENIC DIFFERENTIATION; IN-VITRO; POTENTIAL APPLICATION;
D O I
10.1016/j.jiec.2020.06.017
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The need of tissue and organ for transplantation to repair or replace damaged tissues is significantly higher than the availability of donated organs. Tissue engineering that develops functional substitutes for damaged tissues and organs via employing a combination of 3D biomaterials, supportive bioactive molecules, and/or living cells followed by in vitro culture and/or in vivo implantation, therefore, has attracted much attention in engineering the substitutes. Among 3D biomaterials, hydrogel materials have been extensively explored as matrices for skeletal regeneration because of their biocompatibility, tailorable mechanical properties, flexibility in fabrication, and ability to encapsulate cells and bioactive factors for their sustained, localized and controlled presentation. This review focuses on polymeric hydrogels and theirs composites for both bone and cartilage regeneration, including required properties, design and fabrication, functioned as bared biomaterials or delivery vehicles of bioactive molecules and/or cells together with remaining challenges and future perspectives, emphasizing on the last few years. (C) 2020 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:58 / 82
页数:25
相关论文
共 50 条
  • [41] Application of electrospun nanofibers in bone, cartilage and osteochondral tissue engineering
    Ding, Huixiu
    Cheng, Yizhu
    Niu, Xiaolian
    Hu, Yinchun
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2020, 32 (04) : 536 - 561
  • [42] Tissue engineering of bone and cartilage: a view through the patent literature
    Wolfinbarger, Lloyd, Jr.
    ASIAN BIOMEDICINE, 2011, 5 (01) : 1 - 12
  • [43] Tissue engineering with mesenchymal stem cells to reconstruct cartilage and bone
    Schaefer, DJ
    Klemt, C
    Zhang, XH
    Stark, GB
    CHIRURG, 2000, 71 (09): : 1001 - 1008
  • [44] Potential of Agarose/Silk Fibroin Blended Hydrogel for in Vitro Cartilage Tissue Engineering
    Singh, Yogendra Pratap
    Bhardwaj, Nandana
    Mandal, Biman B.
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (33) : 21236 - 21249
  • [45] Baculovirus as a Gene Delivery Vector for Cartilage and Bone Tissue Engineering
    Lin, Chin-Yu
    Lu, Chia-Hsin
    Luo, Wen-Yi
    Chang, Yu-Han
    Sung, Li-Yu
    Chiu, Hsin-Yi
    Hu, Yu-Chen
    CURRENT GENE THERAPY, 2010, 10 (03) : 242 - 254
  • [46] 3D Printing and Electrospinning of Composite Hydrogels for Cartilage and Bone Tissue Engineering
    De Mori, Arianna
    Fernandez, Marta Pena
    Blunn, Gordon
    Tozzi, Gianluca
    Roldo, Marta
    POLYMERS, 2018, 10 (03)
  • [47] A Review On Use Of Polymeric Hydrogel For Cartilage Regeneration
    Jebasurya, D.
    Arjun, Uppuluri Varuna Naga Venkata
    Shanmugarajan, T. S.
    INTERNATIONAL JOURNAL OF LIFE SCIENCE AND PHARMA RESEARCH, 2020, 11 (02):
  • [48] Gelatin Methacrylate Hydrogel for Tissue Engineering Applications-A Review on Material Modifications
    Bupphathong, Sasinan
    Quiroz, Carlos
    Huang, Wei
    Chung, Pei-Feng
    Tao, Hsuan-Ya
    Lin, Chih-Hsin
    PHARMACEUTICALS, 2022, 15 (02)
  • [49] Tissue Engineering Nasal Cartilage Grafts with Three-Dimensional Printing: A Comprehensive Review
    Perry, Alexander C.
    Adesida, Adetola B.
    TISSUE ENGINEERING PART B-REVIEWS, 2024,
  • [50] A new composite hydrogel combining the biological properties of collagen with the mechanical properties of a supramolecular scaffold for bone tissue engineering
    Maisani, Mathieu
    Ziane, Sophia
    Ehret, Camille
    Levesque, Lucie
    Siadous, Robin
    Le Meins, Jean-Francois
    Chevallier, Pascale
    Barthelemy, Philippe
    De Oliveira, Hugo
    Amedee, Joelle
    Mantovani, Diego
    Chassande, Olivier
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2018, 12 (03) : E1489 - E1500