Naturally reductive homogeneous (α, β) spaces

被引:3
作者
Bahmandoust, Parisa [1 ]
Latifi, Dariush [1 ]
机构
[1] Univ Mohaghegh Ardabili, Dept Math, POB 56199-11367, Ardebil, Iran
关键词
Invariant metric; (alpha; beta)-metrics; Lie group; flag curvature; naturally reductive space; INVARIANT RANDERS METRICS;
D O I
10.1142/S0219887820501170
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study naturally reductive (alpha, beta)-metrics on homogeneous manifolds. We show that naturally reductive (alpha, beta)-metrics arise only when alpha is naturally reductive and some conditions on phi is satisfied. We give an explicit formula for the flag curvature of naturally reductive (alpha, beta)-metrics which improves the flag curvature formula of naturally reductive Randers metrics given in [D. Latifi, Naturally reductive homogeneous Randers spaces, T. Geom. Phys. 60 (2010) 1968-1973]. As a special case, we give an explicit formula for the flag curvature of bi-invariant (alpha, beta)-metrics on Lie groups.
引用
收藏
页数:16
相关论文
共 30 条
[1]   Invariant (α, β)-metrics on homogeneous manifolds [J].
An, Huihui ;
Deng, Shaoqiang .
MONATSHEFTE FUR MATHEMATIK, 2008, 154 (02) :89-102
[2]  
Antonelli P., 1993, THEORY SPRAYS FINSLE
[3]  
Antonelli P. L., 1996, LAGRANGE FINSLER GEO, V76
[4]  
Asanov GS., 1985, FINSLER GEOMETRY REL
[5]  
Balan V, 2003, FINSLER AND LAGRANGE GEOMETRIES, PROCEEDINGS, P259
[6]  
Bao D, 2004, J DIFFER GEOM, V66, P377, DOI 10.4310/jdg/1098137838
[7]  
Bao D., 2000, INTRO RIEMANN FINSLE
[8]  
Chern S.-S., 2005, RIEMANN FINSLER GEOM
[9]   Naturally reductive homogeneous Finsler spaces [J].
Deng, Shaoqiang ;
Hou, Zixin .
MANUSCRIPTA MATHEMATICA, 2010, 131 (1-2) :215-229
[10]   Invariant randers metrics on homogeneous Riemannian manifolds (vol 37, pg 4353, 2004) [J].
Deng, SQ ;
Hou, ZX .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (18) :5249-5250