Ultrafast photonic PCR

被引:199
作者
Son, Jun Ho [1 ,2 ]
Cho, Byungrae [1 ,2 ]
Hong, SoonGweon [1 ,2 ]
Lee, Sang Hun [1 ,2 ]
Hoxha, Ori [1 ]
Haack, Amanda J. [1 ]
Lee, Luke P. [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Biophys Grad Program, Berkeley, CA 94720 USA
基金
新加坡国家研究基金会; 比尔及梅琳达.盖茨基金会;
关键词
genomics; light-emitting diodes (LEDs); molecular diagnostics; personalized medicine; plasmonics; point-of-care (POC) diagnostics; polymerase chain reaction (PCR); NUCLEIC-ACID AMPLIFICATION; DNA ANALYSIS; DIGITAL PCR; DEVICES; SYSTEM;
D O I
10.1038/lsa.2015.53
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Nucleic acid amplification and quantification via polymerase chain reaction (PCR) is one of the most sensitive and powerful tools for clinical laboratories, precision medicine, personalized medicine, agricultural science, forensic science and environmental science. Ultrafast multiplex PCR, characterized by low power consumption, compact size and simple operation, is ideal for timely diagnosis at the point-of-care (POC). Although several fast/ultrafast PCR methods have been proposed, the use of a simple and robust PCR thermal cycler remains challenging for POC testing. Here, we present an ultrafast photonic PCR method using plasmonic photothermal light-to-heat conversion via photon-electron-phonon coupling. We demonstrate an efficient photonic heat converter using a thin gold (Au) film due to its plasmon-assisted high optical absorption (approximately 65% at 450 nm, the peak wavelength of heat source light-emitting diodes (LEDs)). The plasmon-excited Au film is capable of rapidly heating the surrounding solution to over 150 degrees C within 3 min. Using this method, ultrafast thermal cycling (30 cycles; heating and cooling rate of 12.79 +/- 0.93 degrees C s(-1) and 6.6 +/- 0.29 degrees Cs-1, respectively) from 55 degrees C (temperature of annealing) to 95 degrees C (temperature of denaturation) is accomplished within 5 min. Using photonic PCR thermal cycles, we demonstrate here successful nucleic acid (lambda-DNA) amplification. Our simple, robust and low cost approach to ultrafast PCR using an efficient photonic-based heating procedure could be generally integrated into a variety of devices or procedures, including on-chip thermal lysis and heating for isothermal amplifications.
引用
收藏
页码:e280 / e280
页数:7
相关论文
共 27 条
[1]   Thermo-plasmonics: using metallic nanostructures as nano-sources of heat [J].
Baffou, Guillaume ;
Quidant, Romain .
LASER & PHOTONICS REVIEWS, 2013, 7 (02) :171-187
[2]  
Barker M, 2010, NAT METHODS, V7, P351
[3]  
Bergman T. L., 2011, Introduction to heat transfer
[4]  
Brechignac C, 2007, NANOMATERIALS NANOCH, P208
[5]   A review of heat transfer physics [J].
Carey, V. P. ;
Chen, G. ;
Grigoropoulos, C. ;
Kaviany, M. ;
Majumdar, A. .
NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, 2008, 12 (01) :1-60
[6]   Nucleic acid amplification using microfluidic systems [J].
Chang, Chen-Min ;
Chang, Wen-Hsin ;
Wang, Chih-Hung ;
Wang, Jung-Hao ;
Mai, John D. ;
Lee, Gwo-Bin .
LAB ON A CHIP, 2013, 13 (07) :1225-1242
[7]  
Clavero C, 2014, NAT PHOTONICS, V8, P95, DOI [10.1038/nphoton.2013.238, 10.1038/NPHOTON.2013.238]
[8]   Molecular detection of pathogens in water - The pros and cons of molecular techniques [J].
Girones, Rosina ;
Antonia Ferrus, Maria ;
Luis Alonso, Jose ;
Rodriguez-Manzano, Jesus ;
Calgua, Byron ;
de Abreu Correa, Adriana ;
Hundesa, Ayalkibet ;
Carratala, Anna ;
Bofill-Mas, Silvia .
WATER RESEARCH, 2010, 44 (15) :4325-4339
[9]  
Heyries KA, 2011, NAT METHODS, V8, P649, DOI [10.1038/NMETH.1640, 10.1038/nmeth.1640]
[10]   Forensic DNA analysis on microfluidic devices: A review [J].
Horsman, Katie M. ;
Bienvenue, Joan M. ;
Blasier, Kiev R. ;
Landers, James P. .
JOURNAL OF FORENSIC SCIENCES, 2007, 52 (04) :784-799