Self-assembly and co-assembly of block polyelectrolytes in aqueous solutions. Dissipative particle dynamics with explicit electrostatics

被引:17
|
作者
Prochazka, Karel [1 ]
Sindelka, Karel [1 ]
Wang, Xiu [1 ]
Limpouchova, Zuzana [1 ]
Lisal, Martin [2 ,3 ]
机构
[1] Charles Univ Prague, Fac Sci, Dept Phys & Macromol Chem, Prague, Czech Republic
[2] CAS, Inst Chem Proc Fundamentals, Lab Chem & Phys Aerosols, Prague, Czech Republic
[3] Univ JE Purkyne, Fac Sci, Dept Phys, Usti Nad Labem, Czech Republic
关键词
Coarse graining; dissipative and random forces; smeared charges; soft repulsive beads; RESPONSIVE POLYMERIC MICELLES; MESOSCOPIC SIMULATION; DIBLOCK COPOLYMER; POLY(2-VINYLPYRIDINE)-BLOCK-POLY(ETHYLENE OXIDE); INTERPOLYELECTROLYTE COMPLEXES; CONFORMATIONAL BEHAVIOR; MICROPHASE SEPARATION; RELEASE MECHANISM; DRUG-DELIVERY; PH;
D O I
10.1080/00268976.2016.1225130
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This topical review outlines the principles of dissipative particle dynamics (DPD) and discusses its use for studying electrically charged systems - particularly its application for investigation of the self-assembly of polyelectrolytes in aqueous solutions. Special emphasis is placed on DPD with incorporation of explicit electrostatic forces (DPD-E). At present, this empowered method is being used by only a few research groups and most studies of polyelectrolyte self-assembly are based on the 'implicit solvent ionic strength' approach which completely ignores electrostatics. The inclusion of electrostatics in the DPD machinery not only complicates the calculations and considerably slows down the simulation run, but it also generates some problems of primary importance that have to be solved prior to employing DPD-E to study practically important systems. In the introductory parts, we describe the principles of DPD-E, analyse all the problematic issues and show how they can be resolved or overcome. The later parts demonstrate the successful application of DPD-E. We discuss papers that study the self-assembling behaviour of two different practically important systems and show that they not only closely reproduce all the decisive features of the behaviour, but also reveal new details that are difficult to access for experimentalists. The topical review shows that the tedious calculations are worthwhile: (1) DPD-E simulations are concerned with the true principles of the behaviour of polyelectrolyte systems and therefore provide reliable data and (2) the practically important advantage of computer simulations, i.e. their predictive power (at the level of the employed coarse-graining), which is a questionable aspect in simulations that use physically impoverished models, is not endangered in the case of DPD-E.
引用
收藏
页码:3077 / 3092
页数:16
相关论文
共 50 条
  • [21] Gradient crystallization-driven self-assembly: Co-assembly of crystalline-coil polyferrocenylsilane block copolymers
    Gould, Oliver E. C.
    Finnegan, John R.
    Lunn, David J.
    Manners, Ian
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [22] Oligopeptide-Assisted Self-Assembly of Oligothiophenes: Co-Assembly and Chirality Transfer
    Guo, Zongxia
    Gong, Ruiying
    Mu, Youbing
    Wang, Xiao
    Wan, Xiaobo
    CHEMISTRY-AN ASIAN JOURNAL, 2014, 9 (11) : 3245 - 3250
  • [23] Dissipative Particle Dynamics Simulations of a Protein-Directed Self-Assembly of Nanoparticles
    Li, Chunhui y
    Fu, Xuewei
    Zhong, Weihong
    Liu, Jin
    ACS OMEGA, 2019, 4 (06): : 10216 - 10224
  • [24] An insight into polymerization-induced self-assembly by dissipative particle dynamics simulation
    Huang, Feng
    Lv, Yisheng
    Wang, Liquan
    Xu, Pengxiang
    Lin, Jiaping
    Lin, Shaoliang
    SOFT MATTER, 2016, 12 (30) : 6422 - 6429
  • [25] Dissipative particle dynamics models of self-assembly in surfactant, polymeric, nanoparticle systems
    Cheng, Jianli
    Lee, Ming-Tsung
    Vishnyakov, Aleksey
    Neimark, Alexander V.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [26] Dissipative Particle Dynamics Simulation for Self-Assembly of Symmetric Bolaamphiphilic Molecules in Solution
    Fujiwara, Susumu
    Iida, Yoshiki
    Tsutsui, Takehide
    Mizuguchi, Tomoko
    Hashimoto, Masato
    Tamura, Yuichi
    Nakamura, Hiroaki
    PLASMA AND FUSION RESEARCH, 2018, 13
  • [27] Dissipative particle dynamics simulations of polymer-protected nanoparticle self-assembly
    Spaeth, Justin R.
    Kevrekidis, Ioannis G.
    Panagiotopoulos, Athanassios Z.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (18):
  • [28] Simulation of self-assembly in an evaporating droplet of colloidal solution by dissipative particle dynamics
    Lebedev-Stepanov, Peter
    Vlasov, Konstantin
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2013, 432 : 132 - 138
  • [29] Dissipative particle dynamics simulation for self-assembly of symmetric bolaamphiphilic molecules in solution
    Fujiwara S.
    Iida Y.
    Tsutsui T.
    Mizuguchi T.
    Hashimoto M.
    Tamura Y.
    Nakamura H.
    Plasma and Fusion Research, 2018, 13
  • [30] Self-assembly of peptide amphiphiles by vapor pressure osmometry and dissipative particle dynamics
    Seki, Taiga
    Arai, Noriyoshi
    Suh, Donguk
    Ozawa, Taku
    Shimada, Tomoko
    Yasuoka, Kenji
    Hotta, Atsushi
    RSC ADVANCES, 2018, 8 (47): : 26461 - 26468