The M31 microlensing event WeCAPP-GL1/POINT-AGAPE-S3: Evidence for a macho component in the dark halo of M31?

被引:32
作者
Riffeser, A. [1 ]
Seitz, S. [1 ,2 ]
Bender, R. [1 ,2 ]
机构
[1] Univ Observ Munich, D-81679 Munich, Germany
[2] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany
关键词
dark matter; galaxies : halos; galaxies; individual; (M31; NGC; 224); galaxies : luminosity function; mass function; Galaxy : halo; gravitational lensing;
D O I
10.1086/590072
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We reanalyze the M31 microlensing event WeCAPP-GL1/POINT-AGAPE-S3 taking into account that stars are not pointlike but extended. We show that the finite size of stars can dramatically change the self-lensing event rate and ( less dramatically) also the halo lensing event rate, if events are as bright as WeCAPP-GL1. The brightness of the brightest events mostly depends on the source sizes and fluxes and on the distance distribution of sources and lenses and therefore can be used as a sensitive discriminator between halo-lensing and self-lensing events, provided the stellar population mix of source stars is known well enough. Using a realistic model for the 3D light distribution, stellar population, and extinction of M31, we show that an event like WeCAPP-GL1 is very unlikely to be caused by self-lensing. In the entire WeCAPP-field (17.20; x 17.2' centered on the bulge) we expect only one self-lensing event every 49 years with the approximate parameters of WeCAPP-GL1 (FWHM timescale between 1 and 3 days and a flux excess of 19.0 mag or larger in R). On the other hand, if we assume only 20% of the dark halos of M31 and the Milky Way consist of 1 M-circle dot MACHOs, an event like WeCAPP-GL1 would occur every 10 years. Furthermore, if one uses position, FWHM timescale, flux excess, and color of WeCAPP-GL1, self-lensing is even 13 times less likely than lensing by a MACHO, if MACHOs contribute 20% to the total halo mass and have masses in the range of 0.1Y4M(circle dot). We also demonstrate that (1) the brightness distribution of events in general is a good discriminator between self- and halo lensing; (2) the timescale distribution is a good discriminator if the MACHO mass is larger than 1 M-circle dot. Future surveys of M31 like the PAndromeda key project of Pan-STARRS 1 should be able to provide many more such events within the next 4 years.
引用
收藏
页码:1093 / 1109
页数:17
相关论文
共 26 条
[1]   Bulge microlensing optical depth from EROS 2 observations [J].
Afonso, C ;
Albert, JN ;
Alard, C ;
Andersen, J ;
Ansari, R ;
Aubourg, É ;
Bareyre, P ;
Bauer, F ;
Beaulieu, JP ;
Blanc, G ;
Bouquet, A ;
Char, S ;
Charlot, X ;
Couchot, F ;
Coutures, C ;
Derue, F ;
Ferlet, R ;
Fouqué, P ;
Glicenstein, JF ;
Goldman, B ;
Gould, A ;
Graff, D ;
Gros, M ;
Haissinski, J ;
Hamadache, C ;
Hamilton, JC ;
Hardin, D ;
de Kat, J ;
Kim, A ;
Lasserre, T ;
LeGuillou, L ;
Lesquoy, É ;
Loup, C ;
Magneville, C ;
Mansoux, B ;
Marquette, JB ;
Maurice, É ;
Maury, A ;
Milsztajn, A ;
Moniez, M ;
Palanque-Delabrouille, N ;
Perdereau, O ;
Prévot, L ;
Regnault, N ;
Rich, J ;
Spiro, M ;
Tisserand, P ;
Vidal-Madjar, A ;
Vigroux, L ;
Zylberajch, S .
ASTRONOMY & ASTROPHYSICS, 2003, 404 (01) :145-156
[2]   The MACHO project: Microlensing detection efficiency [J].
Alcock, C ;
Allsman, RA ;
Alves, DR ;
Axelrod, TS ;
Becker, AC ;
Bennett, DP ;
Cook, KH ;
Drake, AJ ;
Freeman, KC ;
Geha, M ;
Griest, K ;
Lehner, MJ ;
Marshall, SL ;
Minniti, D ;
Nelson, CA ;
Peterson, BA ;
Popowski, P ;
Pratt, MR ;
Quinn, PJ ;
Stubbs, CW ;
Sutherland, W ;
Tomaney, AB ;
Vandehei, T ;
Welch, D .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2001, 136 (02) :439-462
[3]   The anomaly in the candidate microlensing event PA-99-N2 [J].
An, JH ;
Evans, NW ;
Kerins, E ;
Baillon, P ;
Novati, SC ;
Carr, BJ ;
Crézé, M ;
Giraud-Héraud, Y ;
Gould, A ;
Hewett, P ;
Jetzer, P ;
Kaplan, J ;
Paulin-Henriksson, S ;
Smartt, SJ ;
Tsapras, Y ;
Valls-Gabaud, D .
ASTROPHYSICAL JOURNAL, 2004, 601 (02) :845-857
[4]  
Ansari R, 1999, ASTRON ASTROPHYS, V344, pL49
[5]   A short-timescale candidate microlensing event in the point-agape pixel lensing survey of M31 [J].
Aurière, M ;
Baillon, P ;
Bouquet, A ;
Carr, BJ ;
Crézé, M ;
Evans, NW ;
Giraud-Héraud, Y ;
Gould, A ;
Hewett, PC ;
Kaplan, J ;
Kerins, E ;
Lastennet, E ;
Le Du, Y ;
Melchior, AL ;
Henriksson, SP ;
Smartt, SJ ;
Valls-Gabaud, D .
ASTROPHYSICAL JOURNAL, 2001, 553 (02) :L137-L140
[6]   Testing the universal stellar IMF on the metallicity distribution in the bulges of the Milky Way and M 31 [J].
Ballero, S. K. ;
Kroupa, P. ;
Matteucci, F. .
ASTRONOMY & ASTROPHYSICS, 2007, 467 (01) :117-121
[7]   Evidence of a significant intermediate-age population in the M31 halo from main-sequence photometry [J].
Brown, TM ;
Ferguson, HC ;
Smith, E ;
Kimble, RA ;
Sweigart, AV ;
Renzini, A ;
Rich, RM ;
VandenBerg, DA .
ASTROPHYSICAL JOURNAL, 2003, 592 (01) :L17-L20
[8]   MACHOs in M 31? Absence of evidence but not evidence of absence [J].
de Jong, JTA ;
Widrow, LM ;
Cseresnjes, P ;
Kuijken, K ;
Crotts, APS ;
Bergier, A ;
Baltz, EA ;
Gyuk, G ;
Sackett, PD ;
Uglesich, RR ;
Sutherland, WJ .
ASTRONOMY & ASTROPHYSICS, 2006, 446 (03) :855-U43
[9]   BR PHOTOMETRY OF THE HALO OF M31 [J].
DURRELL, PR ;
HARRIS, WE ;
PRITCHET, CJ .
ASTRONOMICAL JOURNAL, 1994, 108 (06) :2114-2122
[10]   Theoretical isochrones in several photometric systems - I. Johnson-Cousins-Glass, HST/WFPC2, HST/NICMOS, Washington, and ESO Imaging Survey filter sets [J].
Girardi, L ;
Bertelli, G ;
Bressan, A ;
Chiosi, C ;
Groenewegen, MAT ;
Marigo, P ;
Salasnich, B ;
Weiss, A .
ASTRONOMY & ASTROPHYSICS, 2002, 391 (01) :195-212