On Galois groups of unramified pro-p extensions

被引:23
作者
Sharifi, Romyar T. [1 ]
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
关键词
Galois Group; Algebraic Extension; Decomposition Group; Inertia Subgroup; Iwasawa Theory;
D O I
10.1007/s00208-008-0236-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be an odd prime satisfying Vandiver's conjecture. We consider two objects, the Galois group X of the maximal unramified abelian pro-p extension of the compositum of all Z(p)-extensions of Q(mu(p)) and the Galois group G of the maximal unramified pro-p extension of Q(mu(p)infinity). We give a lower bound for the height of the annihilator of X as an Iwasawa module. Under some mild assumptions on Bernoulli numbers, we provide a necessary and sufficient condition for G to be abelian. The bound and the condition in the two results are given in terms of special values of a cup product pairing on cyclotomic p-units. We obtain in particular that, for p < 1,000, Greenberg's conjecture that X is pseudo-null holds and (SIC) is in fact abelian.
引用
收藏
页码:297 / 308
页数:12
相关论文
共 9 条
  • [1] Balister P. N., 1997, ASIAN J MATH, V1, P224, DOI DOI 10.4310/AJM.1997.V1.N2.A2
  • [2] Irregular primes and cyclotomic invariants to 12 million
    Buhler, J
    Crandall, R
    Ernvall, R
    Metsänkylä, T
    Shokrollahi, MA
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2001, 31 (1-2) : 89 - 96
  • [3] COATES J, 2005, PUBL MATH I HAUTES E, V101, P163
  • [4] DO NQ, 1993, K-THEORY, V7, P429
  • [5] Greenberg R., 2001, Adv. Stud. Pure. Math., V30, P335
  • [6] On the failure of pseudo-nullity of Iwasawa modules
    Hachimori, Y
    Sharifi, RT
    [J]. JOURNAL OF ALGEBRAIC GEOMETRY, 2005, 14 (03) : 567 - 591
  • [7] A cup product in the Galois cohomology of number fields
    McCallum, WG
    Sharifi, RT
    [J]. DUKE MATHEMATICAL JOURNAL, 2003, 120 (02) : 269 - 310
  • [8] Venjakob O, 2003, J REINE ANGEW MATH, V559, P153
  • [9] WINGBERG K, 1993, J REINE ANGEW MATH, V440, P129