A Nonhuman Primate Brain-Computer Typing Interface

被引:17
作者
Nuyujukian, Paul [1 ,2 ]
Kao, Jonathan C. [3 ]
Ryu, Stephen I. [3 ,4 ]
Shenoy, Krishna V. [2 ,5 ,6 ]
机构
[1] Stanford Univ, Dept Neurosurg, Dept Elect Engn, Dept Bioengn, Stanford, CA 94305 USA
[2] Stanford Univ, Stanford Neurosci Inst, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[4] Palo Alto Med Fdn, Palo Alto, CA 94550 USA
[5] Stanford Univ, Dept Elect Engn, Dept Bioengn, Dept Neurobiol, Stanford, CA 94305 USA
[6] Howard Hughes Med Inst, Chevy Chase, MD 20815 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Brain-computer interfaces; monkeys; neural prosthesis; PERFORMANCE; CORTEX;
D O I
10.1109/JPROC.2016.2586967
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Brain-computer interfaces (BCIs) record brain activity and translate the information into useful control signals. They can be used to restore function to people with paralysis by controlling end effectors such as computer cursors and robotic limbs. Communication neural prostheses are BCIs that control user interfaces on computers or mobile devices. Here we demonstrate a communication prosthesis by simulating a typing task with two rhesus macaques implanted with electrode arrays. The monkeys used two of the highest known performing BCI decoders to type out words and sentences when prompted one symbol/letter at a time. On average, monkeys J and L achieved typing rates of 10.0 and 7.2 words per minute (wpm), respectively, copying text from a newspaper article using a velocity-only 2-D BCI decoder with dwellbased symbol selection. With a BCI decoder that also featured a discrete click for key selection, typing rates increased to 12.0 and 7.8 wpm. These represent the highest known achieved communication rates using a BCI. We then quantified the relationship between bitrate and typing rate and found it approximately linear: typing rate in wpm is nearly three times bitrate in bits per second. We also compared the metrics of achieved bitrate and information transfer rate and discuss their applicability to real-world typing scenarios. Although this study cannot model the impact of cognitive load of word and sentence planning, the findings here demonstrate the feasibility of BCIs as communication interfaces and represent an upper bound on the expected achieved typing rate for a given BCI throughput.
引用
收藏
页码:66 / 72
页数:7
相关论文
共 28 条
[1]   Decoding motor imagery from the posterior parietal cortex of a tetraplegic human [J].
Aflalo, Tyson ;
Kellis, Spencer ;
Klaes, Christian ;
Lee, Brian ;
Shi, Ying ;
Pejsa, Kelsie ;
Shanfield, Kathleen ;
Hayes-Jackson, Stephanie ;
Aisen, Mindy ;
Heck, Christi ;
Liu, Charles ;
Andersen, Richard A. .
SCIENCE, 2015, 348 (6237) :906-910
[2]   Learning to control a brain-machine interface for reaching and grasping by primates [J].
Carmena, JM ;
Lebedev, MA ;
Crist, RE ;
O'Doherty, JE ;
Santucci, DM ;
Dimitrov, DF ;
Patil, PG ;
Henriquez, CS ;
Nicolelis, MAL .
PLOS BIOLOGY, 2003, 1 (02) :193-208
[3]   Long-term stability of neural prosthetic control signals from silicon cortical arrays in rhesus macaque motor cortex [J].
Chestek, Cynthia A. ;
Gilja, Vikash ;
Nuyujukian, Paul ;
Foster, Justin D. ;
Fan, Joline M. ;
Kaufman, Matthew T. ;
Churchland, Mark M. ;
Rivera-Alvidrez, Zuley ;
Cunningham, John P. ;
Ryu, Stephen I. ;
Shenoy, Krishna V. .
JOURNAL OF NEURAL ENGINEERING, 2011, 8 (04)
[4]   High-performance neuroprosthetic control by an individual with tetraplegia [J].
Collinger, Jennifer L. ;
Wodlinger, Brian ;
Downey, John E. ;
Wang, Wei ;
Tyler-Kabara, Elizabeth C. ;
Weber, Douglas J. ;
McMorland, Angus J. C. ;
Velliste, Meel ;
Boninger, Michael L. ;
Schwartz, Andrew B. .
LANCET, 2013, 381 (9866) :557-564
[5]   A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces [J].
Cunningham, John P. ;
Nuyujukian, Paul ;
Gilja, Vikash ;
Chestek, Cindy A. ;
Ryu, Stephen I. ;
Shenoy, Krishna V. .
JOURNAL OF NEUROPHYSIOLOGY, 2011, 105 (04) :1932-1949
[6]   Real-Time Animation Software for Customized Training to Use Motor Prosthetic Systems [J].
Davoodi, Rahman ;
Loeb, Gerald E. .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2012, 20 (02) :134-142
[7]   Intention estimation in brain-machine interfaces [J].
Fan, Joline M. ;
Nuyujukian, Paul ;
Kao, Jonathan C. ;
Chestek, Cynthia A. ;
Ryu, Stephen I. ;
Shenoy, Krishna V. .
JOURNAL OF NEURAL ENGINEERING, 2014, 11 (01)
[8]   Clinical translation of a high-performance neural prosthesis [J].
Gilja, Vikash ;
Pandarinath, Chethan ;
Blabe, Christine H. ;
Nuyujukian, Paul ;
Simeral, John D. ;
Sarma, Anish A. ;
Sorice, Brittany L. ;
Perge, Janos A. ;
Jarosiewicz, Beata ;
Hochberg, Leigh R. ;
Shenoy, Krishna V. ;
Henderson, Jaimie M. .
NATURE MEDICINE, 2015, 21 (10) :1142-+
[9]   A high-performance neural prosthesis enabled by control algorithm design [J].
Gilja, Vikash ;
Nuyujukian, Paul ;
Chestek, Cindy A. ;
Cunningham, John P. ;
Yu, Byron M. ;
Fan, Joline M. ;
Churchland, Mark M. ;
Kaufman, Matthew T. ;
Kao, Jonathan C. ;
Ryu, Stephen I. ;
Shenoy, Krishna V. .
NATURE NEUROSCIENCE, 2012, 15 (12) :1752-1757
[10]   Neuronal ensemble control of prosthetic devices by a human with tetraplegia [J].
Hochberg, Leigh R. ;
Serruya, Mijail D. ;
Friehs, Gerhard M. ;
Mukand, Jon A. ;
Saleh, Maryam ;
Caplan, Abraham H. ;
Branner, Almut ;
Chen, David ;
Penn, Richard D. ;
Donoghue, John P. .
NATURE, 2006, 442 (7099) :164-171