FIXED POINTS FOR φ-CONTRACTIONS IN E-BANACH SPACES

被引:0
作者
Petre, Ioan-Radu [1 ]
机构
[1] Univ Babes Bolyai, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
来源
FIXED POINT THEORY | 2012年 / 13卷 / 02期
关键词
Contraction principle; E-Banach space; E-metric space; fixed point; Fredholm-Volterra equation; integral equation; Krasnoselskii's theorem; phi-contrac-tion; Picard operator; Riesz space; Schauder's theorem; sum of two operators; vector Banach space; vector metric space; THEOREM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we will present some extensions of Banach-Caccioppoli fixed point principle for classes of phi-contractions in E-metric spaces. Also, we extend Krasnoselskii's fixed point theorem to the case of E-Banach spaces and we give an application to a Fredholm-Volterra type differential equation where one of the integral operators satisfies a phi-contraction condition.
引用
收藏
页码:623 / 639
页数:17
相关论文
共 32 条
  • [1] Agarwal RP, 2004, FIXED POINT THEORY AND APPLICATIONS, VOL 5, P1
  • [2] Aliprantis C., 2005, Infinite Dimensional Analysis
  • [3] [Anonymous], 2003, FIXED POINT THEOR-RO, DOI DOI 10.1007/978-0-387-21593-8
  • [4] Bota M, 2011, FIXED POINT THEOR-RO, V12, P21
  • [5] Carl S, 2011, FIXED POINT THEORY IN ORDERED SETS AND APPLICATIONS: FROM DIFFERENTIAL AND INTEGRAL EQUATIONS TO GAME THEORY, P1, DOI 10.1007/978-1-4419-7585-0
  • [6] Çevik C, 2009, TOPOL METHOD NONL AN, V34, P375
  • [7] Collatz L., 1966, Functional Analysis and Numerical Mathematics
  • [8] Collatz L, 1970, NONLINEAR FUNCTIONAL, P1
  • [9] CRISTESCU R., 1983, ORDER STRUCTURES NOR
  • [10] Cristescu R., 1959, ORDERED LINEAR SPACE