Numerical inverse scattering for the Korteweg-de Vries and modified Korteweg-de Vries equations

被引:37
|
作者
Trogdon, Thomas [1 ]
Olver, Sheehan [2 ]
Deconinck, Bernard [1 ]
机构
[1] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
[2] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
基金
美国国家科学基金会;
关键词
Inverse scattering; Integrable systems; Korteweg-de Vries; Collocation methods; Riemann-Hilbert problems; Asymptotic analysis; RIEMANN-HILBERT PROBLEMS; STEEPEST DESCENT METHOD;
D O I
10.1016/j.physd.2012.02.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recent advances in the numerical solution of Riemann-Hilbert problems allow for the implementation of a Cauchy initial-value problem solver for the Korteweg-de Vries equation (KdV) and the defocusing modified Korteweg-de Vries equation (mKdV), without any boundary approximation. Borrowing ideas from the method of nonlinear steepest descent, this method is demonstrated to be asymptotically accurate. The method is straightforward for the case of defocusing mKdV due to the lack of poles in the Riemann-Hilbert problem and the boundedness properties of the reflection coefficient. Solving KdV requires the introduction of poles in the Riemann-Hilbert problem and more complicated deformations. The introduction of a new deformation for KdV allows for the stable asymptotic computation of the solution in the entire spacial and temporal plane. KdV and mKdV are dispersive equations, and this method can fully capture the dispersion with spectral accuracy. Thus, this method can be used as a benchmarking tool for determining the effectiveness of future numerical methods designed to capture dispersion. This method can easily be adapted to other integrable equations with Riemann-Hilbert formulations, such as the nonlinear Schrodinger equation. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1003 / 1025
页数:23
相关论文
共 50 条
  • [11] The discrete modified Korteweg-de Vries equation under nonzero boundary conditions
    Wang, Guixian
    Han, Bo
    APPLIED MATHEMATICS LETTERS, 2023, 140
  • [12] The modified Korteweg-de Vries equation on the quarter plane with t-periodic data
    Hwang, Guenbo
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2017, 24 (04) : 620 - 634
  • [13] Robust inverse scattering method to the complex modified Korteweg-de Vries equation with nonzero background condition
    Zhang, Yong
    Dong, Huan-He
    PHYSICS LETTERS A, 2022, 449
  • [14] An initial-value problem for the modified Korteweg-de Vries equation
    Leach, J. A.
    IMA JOURNAL OF APPLIED MATHEMATICS, 2013, 78 (06) : 1196 - 1213
  • [15] Numerical study of a multiscale expansion of Korteweg-de Vries and Camassa-Holm equation
    Grava, Tamara
    Klein, Christian
    INTEGRABLE SYSTEMS AND RANDOM MATRICES: IN HONOR OF PERCY DEIFT, 2008, 458 : 81 - 98
  • [16] Some notes on numerical waves of fifth-order Korteweg-de Vries equations
    Lee, C. T.
    Liu, M. L.
    Lin, J. E.
    Lee, C. C.
    PHYSICS ESSAYS, 2019, 32 (01) : 127 - 139
  • [17] Long-time asymptotic behavior for the matrix modified Korteweg-de Vries equation
    Liu, Nan
    Zhao, Xiaodan
    Guo, Boling
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 443
  • [18] LONG-TIME ASYMPTOTIC BEHAVIOR FOR AN EXTENDED MODIFIED KORTEWEG-DE VRIES EQUATION
    Liu, Nan
    Guo, Boling
    Wang, Dengshan
    Wang, Yupeng
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2019, 17 (07) : 1877 - 1913
  • [19] A finite difference method for the Korteweg-de Vries and the Kadomtsev-Petviashvili equations
    Feng, BF
    Mitsui, T
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 90 (01) : 95 - 116
  • [20] WAVE DYNAMICS IN THE EXTENDED FORCED KORTEWEG-DE VRIES EQUATION
    Kapitula, Todd
    De Jong, Nate
    Plaisier, Katelyn
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (03) : 811 - 828