Numerical inverse scattering for the Korteweg-de Vries and modified Korteweg-de Vries equations

被引:37
|
作者
Trogdon, Thomas [1 ]
Olver, Sheehan [2 ]
Deconinck, Bernard [1 ]
机构
[1] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
[2] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
基金
美国国家科学基金会;
关键词
Inverse scattering; Integrable systems; Korteweg-de Vries; Collocation methods; Riemann-Hilbert problems; Asymptotic analysis; RIEMANN-HILBERT PROBLEMS; STEEPEST DESCENT METHOD;
D O I
10.1016/j.physd.2012.02.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recent advances in the numerical solution of Riemann-Hilbert problems allow for the implementation of a Cauchy initial-value problem solver for the Korteweg-de Vries equation (KdV) and the defocusing modified Korteweg-de Vries equation (mKdV), without any boundary approximation. Borrowing ideas from the method of nonlinear steepest descent, this method is demonstrated to be asymptotically accurate. The method is straightforward for the case of defocusing mKdV due to the lack of poles in the Riemann-Hilbert problem and the boundedness properties of the reflection coefficient. Solving KdV requires the introduction of poles in the Riemann-Hilbert problem and more complicated deformations. The introduction of a new deformation for KdV allows for the stable asymptotic computation of the solution in the entire spacial and temporal plane. KdV and mKdV are dispersive equations, and this method can fully capture the dispersion with spectral accuracy. Thus, this method can be used as a benchmarking tool for determining the effectiveness of future numerical methods designed to capture dispersion. This method can easily be adapted to other integrable equations with Riemann-Hilbert formulations, such as the nonlinear Schrodinger equation. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1003 / 1025
页数:23
相关论文
共 50 条
  • [1] Numerical Studies of the Fractional Korteweg-de Vries, Korteweg-de Vries-Burgers' and Burgers' Equations
    Khader, M. M.
    Saad, Khaled M.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2021, 91 (01) : 67 - 77
  • [2] Numerical Studies of the Fractional Korteweg-de Vries, Korteweg-de Vries-Burgers’ and Burgers’ Equations
    M. M. Khader
    Khaled M. Saad
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2021, 91 : 67 - 77
  • [3] Integrability of reductions of the discrete Korteweg-de Vries and potential Korteweg-de Vries equations
    Hone, A. N. W.
    van der Kamp, P. H.
    Quispel, G. R. W.
    Tran, D. T.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2154):
  • [4] The coupled modified Korteweg-de Vries equations
    Tsuchida, T
    Wadati, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (04) : 1175 - 1187
  • [5] Inverse Scattering and Loaded Modified Korteweg-de Vries Equation
    Feckan, Michal
    Urazboev, Gayrat
    Baltaeva, Iroda
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2022, 15 (02): : 174 - 183
  • [6] On solitary-wave solutions for the coupled Korteweg-de Vries and modified Korteweg-de Vries equations and their dynamics
    Hong, WP
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2006, 61 (3-4): : 125 - 132
  • [7] Matrix Korteweg-de Vries and modified Korteweg-de Vries hierarchies: Noncommutative soliton solutions
    Carillo, Sandra
    Schiebold, Cornelia
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (05)
  • [8] Noncommutative Korteweg-de Vries and modified Korteweg-de Vries hierarchies via recursion methods
    Carillo, Sandra
    Schiebold, Cornelia
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (07)
  • [9] Modified Korteweg-de Vries surfaces
    Tek, Suleyman
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (01)
  • [10] On the Modified Korteweg-De Vries Equation
    Hayashi, Nakao
    Naumkin, Pavel
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2001, 4 (03) : 197 - 227