Semiclassical states for the nonlinear Schrodinger equation on saddle points of the potential via variational methods

被引:35
作者
d'Avenia, Pietro [2 ]
Pomponio, Alessio [2 ]
Ruiz, David [1 ]
机构
[1] Univ Granada, Fac Ciencias, Dpto Anal Matemat, E-18071 Granada, Spain
[2] Politecn Bari, Dipartimento Matemat, I-70125 Bari, Italy
关键词
Nonlinear Schrodinger equation; Semiclassical states; Variational methods; CONCENTRATION-COMPACTNESS PRINCIPLE; SEMILINEAR ELLIPTIC PROBLEMS; SCALAR FIELD-EQUATIONS; POSITIVE SOLUTIONS; STANDING WAVES; BOUND-STATES; EXISTENCE; CALCULUS;
D O I
10.1016/j.jfa.2012.03.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study semiclassical states for the problem -epsilon(2) Delta u + V(x)u = f (u) in N, where f (u) is a superlinear nonlinear term. Under our hypotheses on f. a Lyapunov-Schmidt reduction is not possible. We use variational methods to prove the existence of spikes around saddle points of the potential V (x). (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:4600 / 4633
页数:34
相关论文
共 32 条
  • [1] Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
  • [2] Semiclassical states of nonlinear Schrodinger equations
    Ambrosetti, A
    Badiale, M
    Cingolani, S
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 140 (03) : 285 - 300
  • [3] Ambrosetti A., 2005, PROGR MATH, V240
  • [4] [Anonymous], 1934, Ann. Sci. cole Norm. Sup
  • [5] [Anonymous], 1997, Adv. Diff. Equats
  • [6] Avila A, 2005, COMMUN PUR APPL ANAL, V4, P341
  • [7] On the existence of a positive solution of semilinear elliptic equations in unbounded domains
    Bahri, A
    Lions, PL
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (03): : 365 - 413
  • [8] POSITIVE SOLUTIONS OF SOME NONLINEAR ELLIPTIC PROBLEMS IN EXTERIOR DOMAINS
    BENCI, V
    CERAMI, G
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1987, 99 (04) : 283 - 300
  • [9] BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
  • [10] BERESTYCKI H, 1983, CR ACAD SCI I-MATH, V297, P307