A complex WKB method for adiabatic problems

被引:0
作者
Fedotov, A
Klopp, F
机构
[1] St Petersburg State Univ, Dept Math Phys, St Petersburg 198904, Russia
[2] Univ Paris 13, Dept Math, Inst Galilee, LAGA,CNRS,UMR 7539, F-93430 Villetaneuse, France
[3] Univ Paris 12, F-94010 Creteil, France
关键词
periodic Schrodinger equation; adiabatic perturbations; complex WKB method;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is devoted to a new version of the complex WKB method suited for adiabatic perturbations of one-dimensional periodic Schrodinger operators. Therefore, we introduce an additional parameter, and it is this parameter (and not the variable of the equation) that will become complex. This naturally leads to canonical domains where we construct solutions of the Schrodinger equation with a standard asymptotic behavior. These can be used to compute the asymptotics of the exponentially small coefficients of transfer matrices (e.g., scattering matrices, monodromy matrices, etc.). We give an example of such a computation.
引用
收藏
页码:219 / 264
页数:46
相关论文
共 17 条
[1]   Imaginary parts of Stark-Wannier resonances [J].
Buslaev, V ;
Grigis, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (05) :2520-2550
[2]  
BUSLAEV V, 1998, 9821 U PAR NORD
[3]  
BUSLAEV V, 1993, COMPLEX WKB METHOD H
[4]  
BUSLAEV V, 1989, ALGEBRA ANAL, V23, P1
[5]  
BUSLAEV V, 1984, TEOR MAT FIZ, V58, P223
[6]  
Buslaev V. S., 1994, ST PETERSBURG MATH J, V6, P495
[7]  
Fedoryuk M., 1993, ASYMPTOTIC ANAL
[8]  
Fedotov A, 1999, OPER THEORY ADV APPL, V108, P243
[9]  
FEDOTOV A, 1998, ANDERSON TRANSITIONS
[10]  
FEDOTOV A, UNPUB SPECTRUM ADIAB