Solvability of Some Integro-Differential Equations with Transport and Concentrated Sources

被引:0
作者
Efendiev, Messoud [1 ,2 ]
Vougalter, Vitali [3 ]
机构
[1] Helmholtz Zentrum Munchen, Inst Computat Biol, Ingolstadter Landstr 1, D-85764 Neuherberg, Germany
[2] Marmara Univ, Dept Math, Istanbul, Turkiye
[3] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
关键词
Integro-differential equations; Dirac delta function; Non-Fredholm operators; Sobolev spaces; NONLINEAR SCHRODINGER-EQUATION; PROPERNESS PROPERTIES; ELLIPTIC-OPERATORS; HOLDER THEORY; FREDHOLM; DIFFUSION; DIRICHLET; EXISTENCE; SYSTEMS;
D O I
10.1007/s10884-022-10212-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The work deals with the existence of solutions of an integro-differential equation in the case of the normal diffusion and the influx/efflux term proportional to the Dirac delta function in the presence of the drift term. The proof of the existence of solutions relies on a fixed point technique. We use the solvability conditions for the non-Fredholm elliptic operators in unbounded domains and discuss how the introduction of the transport term influences the regularity of the solutions.
引用
收藏
页码:1967 / 1980
页数:14
相关论文
共 43 条
[1]   Exactly Solvable Models and Bifurcations: the Case of the Cubic NLS with a δ or a δ′ Interaction in Dimension One [J].
Adami, R. ;
Noja, D. .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2014, 9 (05) :1-16
[2]   Standing lattice solitons in the discrete NLS equation with saturation [J].
Alfimov, G. L. ;
Korobeinikov, A. S. ;
Lustri, C. J. ;
Pelinovsky, D. E. .
NONLINEARITY, 2019, 32 (09) :3445-3484
[3]   Wave Systems with an Infinite Number of Localized Traveling Waves [J].
Alfimov, Georgy L. ;
Medvedeva, Elina V. ;
Pelinovsky, Dmitry E. .
PHYSICAL REVIEW LETTERS, 2014, 112 (05)
[4]   Dirichlet and Neumann exterior problems for the n-dimensional Laplace operator an approach in weighted Sobolev spaces [J].
Amrouche, C ;
Girault, V ;
Giroire, J .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (01) :55-81
[5]   Mixed exterior Laplace's problem [J].
Amrouche, Cherif ;
Bonzom, Florian .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (01) :124-140
[6]  
BENKIRANE N, 1988, CR ACAD SCI I-MATH, V307, P577
[7]  
BOLLEY P, 1993, J MATH PURE APPL, V72, P105
[8]   Index property in Holderian theory for the Dirichlet exterior problem [J].
Bolley, P ;
Lai, PT .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (1-2) :315-334
[9]  
Coombes S., 2014, Neural Fields: Theory and Applications, P1, DOI [DOI 10.1007/978-3-642-54593-11, DOI 10.1007/978-3-642-54593-1]
[10]   Spectra of positive and negative energies in the linearized NLS problem [J].
Cuccagna, S ;
Pelinovsky, D ;
Vougalter, V .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (01) :1-29