Explanatory Interactive Machine Learning

被引:112
作者
Teso, Stefano [1 ]
Kersting, Kristian [2 ,3 ]
机构
[1] Katholieke Univ Leuven, Dept Comp Sci, Leuven, Belgium
[2] Tech Univ Darmstadt, Dept Comp Sci, Darmstadt, Germany
[3] Tech Univ Darmstadt, Ctr Cognit Sci, Darmstadt, Germany
来源
AIES '19: PROCEEDINGS OF THE 2019 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY | 2019年
基金
欧洲研究理事会;
关键词
machine learning; active learning; explainable artificial intelligence; interpretability; TRUST;
D O I
10.1145/3306618.3314293
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although interactive learning puts the user into the loop, the learner remains mostly a black box for the user. Understanding the reasons behind predictions and queries is important when assessing how the learner works and, in turn, trust. Consequently, we propose the novel framework of explanatory interactive learning where, in each step, the learner explains its query to the user, and the user interacts by both answering the query and correcting the explanation. We demonstrate that this can boost the predictive and explanatory powers of, and the trust into, the learned model, using text (e.g. SVMs) and image classification (e.g. neural networks) experiments as well as a user study.
引用
收藏
页码:239 / 245
页数:7
相关论文
共 50 条
[21]   Recent research advances on interactive machine learning [J].
Liu Jiang ;
Shixia Liu ;
Changjian Chen .
Journal of Visualization, 2019, 22 :401-417
[22]   ALEEDSA: Augmented Reality for Interactive Machine Learning [J].
Ferrario, Andrea ;
Weibel, Raphael ;
Feuerriegel, Stefan .
CHI'20: EXTENDED ABSTRACTS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, 2020,
[23]   Symphony: Composing Interactive Interfaces for Machine Learning [J].
Baeuerle, Alex ;
Cabrera, Angel Alexander ;
Hohman, Fred ;
Maher, Megan ;
Koski, David ;
Suau, Xavier ;
Barik, Titus ;
Moritz, Dominik .
PROCEEDINGS OF THE 2022 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI' 22), 2022,
[24]   A Taxonomy of Interactive Online Machine Learning Strategies [J].
Tegen, Agnes ;
Davidsson, Paul ;
Persson, Jan A. .
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT II, 2021, 12458 :137-153
[25]   Interactive Machine Learning for Multimodal Affective Computing [J].
Titung, Rajesh .
2022 10TH INTERNATIONAL CONFERENCE ON AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION WORKSHOPS AND DEMOS, ACIIW, 2022,
[26]   A Machine learning approach for interactive lesion segmentation [J].
Li, Yuanzhong ;
Hara, Shoji ;
Ito, Wataru ;
Shimura, Kazuo .
MEDICAL IMAGING 2007: IMAGE PROCESSING, PTS 1-3, 2007, 6512
[27]   Improving Explanatory Power of Machine Learning in the Symbolic Data Analysis Framework [J].
Diday, E. .
PROGRESS IN ARTIFICIAL INTELLIGENCE AND PATTERN RECOGNITION, IWAIPR 2018, 2018, 11047 :3-14
[28]   Interpretable machine learning for dementia: A systematic review [J].
Martin, Sophie A. ;
Townend, Florence J. ;
Barkhof, Frederik ;
Cole, James H. .
ALZHEIMERS & DEMENTIA, 2023, 19 (05) :2135-2149
[29]   PlushPal: Storytelling with Interactive Plush Toys and Machine Learning [J].
Tseng, Tiffany ;
Murai, Yumiko ;
Freed, Natalie ;
Gelosi, Deanna ;
Ta, Tung D. ;
Kawahara, Yoshihiro .
IDC '21: PROCEEDINGS OF INTERACTION DESIGN AND CHILDREN 2021, 2021, :236-245
[30]   Use of Machine Learning in Interactive Cybersecurity and Network Education [J].
Loftus, Neil ;
Narman, Husnu S. .
SENSORS, 2023, 23 (06)