POSITIVE PERIODIC SOLUTIONS FOR LIENARD TYPE p-LAPLACIAN EQUATIONS

被引:0
作者
Meng, Junxia [1 ]
机构
[1] Jiaxing Univ, Coll Math & Informat Engn, Jiaxing 314001, Zhejiang, Peoples R China
关键词
p-Laplacian; positive periodic solutions; Lienard equation; topological degree; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using topological degree theory, we obtain sufficient conditions for the existence and uniqueness of positive periodic solutions for Lienard type p-Laplacian differential equations.
引用
收藏
页数:7
相关论文
共 11 条
[1]  
Gaines R. E., 1977, Coincidence degree, and nonlinear differential equations
[2]  
HUANG XK, 1994, CHINESE SCI BULL, V39, P201
[3]  
LI YK, 1998, J MATH RES EXPOSITIO, V18, P565
[4]   Periodic solutions for Lienard type p-Laplacian equation with a deviating argument [J].
Liu, Bingwen .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 214 (01) :13-18
[5]   On the existence of periodic solutions to p-Laplacian Rayleigh differential equation with a delay [J].
Lu, Shiping ;
Gui, Zhanjie .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) :685-702
[6]   Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviating argument [J].
Lu, SP ;
Ge, WG .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (04) :501-514
[7]   Periodic solutions for nonlinear systems with p-Laplacian-like operators [J].
Manasevich, R ;
Mawhin, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 145 (02) :367-393
[8]  
Wang G, 2000, INT J MATH MATH SCI, V23, P65
[9]   A priori bounds for periodic solutions of a delay Rayleigh equation [J].
Wang, GQ ;
Cheng, SS .
APPLIED MATHEMATICS LETTERS, 1999, 12 (03) :41-44
[10]  
Zhang Fuxing, 2007, NONLINEAR A IN PRESS