A multilevel approach for stochastic nonlinear optimal control

被引:3
作者
Jasra, Ajay [1 ]
Heng, Jeremy [2 ]
Xu, Yaxian [3 ]
Bishop, Adrian N. [4 ]
机构
[1] King Abdullah Univ Sci & Technol, Comp Elect & Math Sci & Engn Div, Thuwal, Saudi Arabia
[2] ESSEC Business Sch, Singapore, Singapore
[3] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore, Singapore
[4] Univ Technol Sydney, Sydney, NSW, Australia
关键词
Optimal control; multilevel Monte Carlo; Markov chain Monte Carlo; sequential Monte Carlo;
D O I
10.1080/00207179.2020.1849805
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a class of finite-time horizon nonlinear stochastic optimal control problem. Although the optimal control admits a path integral representation for this class of control problems, efficient computation of the associated path integrals remains a challenging task. Wepropose a new Monte Carlo approach that significantly improves upon existing methodology. We tackle the issue of exponential growth in variance with the time horizon by casting optimal control estimation as a smoothing problem for a state-space model, and applying smoothing algorithms based on particle Markov chain Monte Carlo. To further reduce the cost, we then develop a multilevel Monte Carlo method which allows us to obtain an estimator of the optimal control with O(epsilon(2)) mean squared error with a cost of O(epsilon(-2) log(epsilon)(2)). In contrast, a cost of O(epsilon(-3)) is required for the existing methodology to achieve the same mean squared error. Our approach is illustrated on two numerical examples.
引用
收藏
页码:1290 / 1304
页数:15
相关论文
共 39 条
[1]   Uniform ergodicity of the iterated conditional SMC and geometric ergodicity of particle Gibbs samplers [J].
Andrieu, Christophe ;
Lee, Anthony ;
Vihola, Matti .
BERNOULLI, 2018, 24 (02) :842-872
[2]   Particle Markov chain Monte Carlo methods [J].
Andrieu, Christophe ;
Doucet, Arnaud ;
Holenstein, Roman .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 :269-342
[3]  
Arnold Ludwig, 1974, Stochastic differential equations: Theory and applications(book)
[4]   Nonlinear stochastic receding horizon control: stability, robustness and Monte Carlo methods for control approximation [J].
Bertoli, F. ;
Bishop, A. N. .
INTERNATIONAL JOURNAL OF CONTROL, 2018, 91 (10) :2387-2402
[5]  
Bertoli F., 2018, PREPRINT
[6]  
Chebotar Yevgen, 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA), P3381, DOI 10.1109/ICRA.2017.7989384
[7]   Dynamics of Drug Resistance: Optimal Control of an Infectious Disease [J].
Chehrazi, Naveed ;
Cipriano, Lauren E. ;
Enns, Eva A. .
OPERATIONS RESEARCH, 2019, 67 (03) :619-650
[8]   A PROBABILISTIC NUMERICAL METHOD FOR FULLY NONLINEAR PARABOLIC PDES [J].
Fahim, Arash ;
Touzi, Nizar ;
Warin, Xavier .
ANNALS OF APPLIED PROBABILITY, 2011, 21 (04) :1322-1364
[9]   OPTIMAL CONTROL AND NONLINEAR FILTERING FOR NONDEGENERATE DIFFUSION PROCESSES. [J].
FLEMING, WENDELL H. ;
MITTER, SANJOY K. .
1982, V 8 (N 1) :63-77
[10]  
Fleming W.H., 2006, CONTROLLED MARKOV PR, V2, DOI [10.1007/0-387-31071-1, DOI 10.1007/0-387-31071-1]