The Computation of an Input-State-Output Realization of a Convolutional Code in order to obtain a Secure McEliece-like Cryptosystem

被引:0
作者
Climent, J. J. [1 ]
Herranz, M. V. [2 ,3 ]
Perea, C. [2 ,3 ]
Tomas, V. [1 ]
机构
[1] Univ Alicante, Dept Stat & Operat Res, Alicante, Spain
[2] Univ Miguel Hernandez, Ctr Operat Res, Elche, Spain
[3] Univ Miguel Hernandez, Dept Stat Math & Informat, Elche, Spain
来源
PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE ON ENGINEERING COMPUTATIONAL TECHNOLOGY | 2010年 / 94卷
关键词
convolutional code; McEliece cryptosystem; public key cryptosystem; input-state-output representation; encryption; decryption; Reed Solomon code; controllability; ALGORITHM;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work, we use some results introduced by Zaballa (2008) in order to determine the input-state-output representation of a convolutional code to construct a McEliece-like cryptosystem. We construct our cryptosystem so that any user can encrypt a message by introducing as many errors as possible.
引用
收藏
页数:11
相关论文
共 17 条
[1]  
Allen B. M., 1999, THESIS
[2]   A new algorithm for finding minimum-weight words in a linear code: Application to McEliece's cryptosystem and to narrow-sense BCH codes of length 511 [J].
Canteaut, A ;
Chabaud, F .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (01) :367-378
[3]   Linear system modelization of concatenated block and convolutional codes [J].
Climent, Joan-Josep ;
Herranz, Victoria ;
Perea, Carmen .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (5-6) :1191-1212
[4]   A first approximation of concatenated convolutional codes from linear systems theory viewpoint [J].
Climent, Joan-Josep ;
Herranz, Victoria ;
Perea, Carmen .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 425 (2-3) :673-699
[5]  
Engelbert D., 2006, 2006162 CRYPT EPRINT
[6]   Convolutional codes with maximum distance profile [J].
Hutchinson, R ;
Rosenthal, J ;
Smarandache, R .
SYSTEMS & CONTROL LETTERS, 2005, 54 (01) :53-63
[7]  
Janwa H., 1996, Designs, Codes and Cryptography, V8, P293, DOI 10.1023/A:1027351723034
[8]   Weak keys in the McEliece public-key cryptosystem [J].
Loidreau, P ;
Sendrier, N .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (03) :1207-1211
[9]  
McEliece R. J., 1978, 4244 DNS
[10]  
McEliece R.J., 1987, FINITE FIELDS COMPUT