D-Lactic acid production from cellulose: dilute acid treatment of cellulose assisted by microwave followed by microbial fermentation

被引:19
作者
Gavila, Llorenc [1 ]
Constanti, Magda [1 ]
Medina, Francesc [1 ]
机构
[1] Univ Rovira & Virgili, Dept Chem Engn, E-43007 Tarragona, Spain
关键词
Cellulose; Dilute acid treatment; Microwave; Microbial fermentation; Lactic acid; LIGNOCELLULOSIC BIOMASS; CRYSTALLINE-STRUCTURE; HYDROLYSIS; CHEMICALS;
D O I
10.1007/s10570-015-0720-1
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
Cellulose chemical robustness still remains a burden for value-added compounds production from biomass. The goal of this study was to take profit of the synergetic effects of dilute acid treatment and microwaves for the hydrolysis of highly crystalline cellulose. Afterwards, the liquid phase obtained after this treatment was treated microbiologically to transform the hydrolyzed product, containing glucose, into lactic acid. The hydrolysis reaction was performed in a microwave reactor. The samples were irradiated for 30 min up to 4 h at 400 watts maintaining the temperature at 393 K. At the optimal conditions, 88 % of cellulose was hydrolyzed. Glucose was the main obtained product. Through bio-fermentation Lactobacillus delbrueckii converted selectively all the present glucose into 98 % optically pure d-lactic acid, without suffering any inhibition from the rest of hydrolyzed products. The combination of cellulose hydrolysis under microwave irradiation and bio-fermentation at the conditions performed in this study opens a new alternative route to obtain valuable chemical platform products from cellulose.
引用
收藏
页码:3089 / 3098
页数:10
相关论文
共 21 条
[1]  
Abdel-Rahman MA, 2011, J BIOTECHNOL, V156, P286, DOI [10.1016/j.jbiotec.2011.06.017 , 10.1016/j.jbiotec.2011.06.017]
[2]   Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy [J].
Åkerholm, M ;
Hinterstoisser, B ;
Salmén, L .
CARBOHYDRATE RESEARCH, 2004, 339 (03) :569-578
[3]   Lactic acid properties, applications and production: A review [J].
Castillo Martinez, Fabio Andres ;
Balciunas, Eduardo Marcos ;
Manuel Salgado, Jose ;
Dominguez Gonzalez, Jose Manuel ;
Converti, Attilio ;
de Souza Oliveira, Ricardo Pinheiro .
TRENDS IN FOOD SCIENCE & TECHNOLOGY, 2013, 30 (01) :70-83
[4]   Hydrolysis of dilute acid-pretreated cellulose under mild hydrothermal conditions [J].
Chimentao, R. J. ;
Lorente, E. ;
Gispert-Guirado, F. ;
Medina, F. ;
Lopez, F. .
CARBOHYDRATE POLYMERS, 2014, 111 :116-124
[5]   Energy resources and global development [J].
Chow, J ;
Kopp, RJ ;
Portney, PR .
SCIENCE, 2003, 302 (5650) :1528-1531
[6]   Chemicals from biomass [J].
Dodds, David R. ;
Gross, Richard A. .
SCIENCE, 2007, 318 (5854) :1250-1251
[7]   Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering [J].
Huber, George W. ;
Iborra, Sara ;
Corma, Avelino .
CHEMICAL REVIEWS, 2006, 106 (09) :4044-4098
[8]   Cellulose: Fascinating biopolymer and sustainable raw material [J].
Klemm, D ;
Heublein, B ;
Fink, HP ;
Bohn, A .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (22) :3358-3393
[9]   Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives [J].
Kumar, Raj ;
Singh, Sompal ;
Singh, Om V. .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2008, 35 (05) :377-391
[10]   Poly-lactic acid synthesis for application in biomedical devices - A review [J].
Lasprilla, Astrid J. R. ;
Martinez, Guillermo A. R. ;
Lunelli, Betania H. ;
Jardini, Andre L. ;
Maciel Filho, Rubens .
BIOTECHNOLOGY ADVANCES, 2012, 30 (01) :321-328