COMPOSITE IMAGES OF GALOIS FOR ELLIPTIC CURVES OVER Q AND ENTANGLEMENT FIELDS

被引:13
作者
Morrow, Jackson S. [1 ]
机构
[1] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
关键词
RATIONAL-POINTS; GEOMETRY; DIOPHANTINE; VARIETIES; CHABAUTY;
D O I
10.1090/mcom/3426
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let E be an elliptic curve defined over Q without complex multiplication. For each prime l, there is a representation rho (E,l) : Gal((Q) over bar /Q) -> GL(2)(Z/lZ) that describes the Galois action on the l-torsion points of E. Building on recent work of Rouse-Zureick-Brown and Zywina, we find models for composite level modular curves whose rational points classify elliptic curves over Q with simultaneously non-surjective, composite images of Galois. We also provably determine the rational points on almost all of these curves. Finally, we give an application of our results to the study of entanglement fields.
引用
收藏
页码:2389 / 2421
页数:33
相关论文
共 43 条
[1]  
Adelmann C., 2001, LECT NOTES MATH, V1761
[2]  
[Anonymous], 2001, CAMBRIDGE TRACTS MAT
[3]   Tetrahedral elliptic curves and the local-global principle for isogenies [J].
Banwait, Barinder S. ;
Cremona, John E. .
ALGEBRA & NUMBER THEORY, 2014, 8 (05) :1201-1229
[4]   An exceptional isomorphism between modular curves of level 13 [J].
Baran, Burcu .
JOURNAL OF NUMBER THEORY, 2014, 145 :273-300
[5]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[6]   ELLIPTIC CURVES WITH 2-TORSION CONTAINED IN THE 3-TORSION FIELD [J].
Brau, Julio ;
Jones, Nathan .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (03) :925-936
[7]  
Bruin N, 2003, J REINE ANGEW MATH, V562, P27
[8]   The arithmetic of Prym varieties in genus 3 [J].
Bruin, Nils .
COMPOSITIO MATHEMATICA, 2008, 144 (02) :317-338
[9]   The Mordell-Weil sieve: proving non-existence of rational points on curves [J].
Bruin, Nils ;
Stoll, Michael .
LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2010, 13 :272-306
[10]  
Chabauty C, 1941, CR HEBD ACAD SCI, V212, P882