Reinforcement Learning Interpretation Methods: A Survey

被引:37
|
作者
Alharin, Alnour [1 ]
Doan, Thanh-Nam [1 ]
Sartipi, Mina [1 ]
机构
[1] Univ Tennessee Chattanooga, Dept Comp Sci & Engn, Chattanooga, TN 37403 USA
基金
美国国家科学基金会;
关键词
Mathematical model; Measurement; Learning (artificial intelligence); Machine learning; Markov processes; Medical services; Law; Reinforcement learning; machine learning; interpretability; interpretation; survey;
D O I
10.1109/ACCESS.2020.3023394
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Reinforcement Learning (RL) systems achieved outstanding performance in different domains such as Atari games, finance, healthcare, and self-driving cars. However, their black-box nature complicates their use, especially in critical applications such as healthcare. To solve this problem, researchers have proposed different approaches to interpret RL models. Some of these methods were adopted from machine learning, while others were designed specifically for RL. The main objective of this paper is to show and explain RL interpretation methods, the metrics used to classify them, and how these metrics were applied to understand the internal details of RL models. We reviewed papers that propose new RL interpretation methods, improve the old ones, or discuss the pros and cons of the existing methods.
引用
收藏
页码:171058 / 171077
页数:20
相关论文
共 50 条
  • [41] A Survey on Deep Reinforcement Learning
    Liu Q.
    Zhai J.-W.
    Zhang Z.-Z.
    Zhong S.
    Zhou Q.
    Zhang P.
    Xu J.
    2018, Science Press (41): : 1 - 27
  • [42] Ensemble reinforcement learning: A survey
    Song, Yanjie
    Suganthan, Ponnuthurai Nagaratnam
    Pedrycz, Witold
    Ou, Junwei
    He, Yongming
    Chen, Yingwu
    Wu, Yutong
    APPLIED SOFT COMPUTING, 2023, 149
  • [43] A survey of inverse reinforcement learning
    Adams, Stephen
    Cody, Tyler
    Beling, Peter A.
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (06) : 4307 - 4346
  • [44] A survey of inverse reinforcement learning
    Stephen Adams
    Tyler Cody
    Peter A. Beling
    Artificial Intelligence Review, 2022, 55 : 4307 - 4346
  • [45] A Survey on Reinforcement Learning-Aided Caching in Heterogeneous Mobile Edge Networks
    Nomikos, Nikolaos
    Zoupanos, Spyros
    Charalambous, Themistoklis
    Krikidis, Ioannis
    IEEE ACCESS, 2022, 10 : 4380 - 4413
  • [46] Deep reinforcement learning: a survey
    Hao-nan Wang
    Ning Liu
    Yi-yun Zhang
    Da-wei Feng
    Feng Huang
    Dong-sheng Li
    Yi-ming Zhang
    Frontiers of Information Technology & Electronic Engineering, 2020, 21 : 1726 - 1744
  • [47] A TUTORIAL SURVEY OF REINFORCEMENT LEARNING
    KEERTHI, SS
    RAVINDRAN, B
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 1994, 19 : 851 - 889
  • [48] Deep reinforcement learning: a survey
    Wang, Hao-nan
    Liu, Ning
    Zhang, Yi-yun
    Feng, Da-wei
    Huang, Feng
    Li, Dong-sheng
    Zhang, Yi-ming
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2020, 21 (12) : 1726 - 1744
  • [49] Recent Reinforcement Learning and Blockchain Based Security Solutions for Internet of Things: Survey
    Gasmi, Rim
    Hammoudi, Sarra
    Lamri, Manal
    Harous, Saad
    WIRELESS PERSONAL COMMUNICATIONS, 2023, 132 (02) : 1307 - 1345
  • [50] Recent Reinforcement Learning and Blockchain Based Security Solutions for Internet of Things: Survey
    Rim Gasmi
    Sarra Hammoudi
    Manal Lamri
    Saad Harous
    Wireless Personal Communications, 2023, 132 : 1307 - 1345