Reinforcement Learning Interpretation Methods: A Survey

被引:37
|
作者
Alharin, Alnour [1 ]
Doan, Thanh-Nam [1 ]
Sartipi, Mina [1 ]
机构
[1] Univ Tennessee Chattanooga, Dept Comp Sci & Engn, Chattanooga, TN 37403 USA
基金
美国国家科学基金会;
关键词
Mathematical model; Measurement; Learning (artificial intelligence); Machine learning; Markov processes; Medical services; Law; Reinforcement learning; machine learning; interpretability; interpretation; survey;
D O I
10.1109/ACCESS.2020.3023394
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Reinforcement Learning (RL) systems achieved outstanding performance in different domains such as Atari games, finance, healthcare, and self-driving cars. However, their black-box nature complicates their use, especially in critical applications such as healthcare. To solve this problem, researchers have proposed different approaches to interpret RL models. Some of these methods were adopted from machine learning, while others were designed specifically for RL. The main objective of this paper is to show and explain RL interpretation methods, the metrics used to classify them, and how these metrics were applied to understand the internal details of RL models. We reviewed papers that propose new RL interpretation methods, improve the old ones, or discuss the pros and cons of the existing methods.
引用
收藏
页码:171058 / 171077
页数:20
相关论文
共 50 条
  • [21] A Survey of Interpretable Machine Learning Methods
    Wang, Yan
    Tuerhong, Gulanbaier
    2022 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY, HUMAN-COMPUTER INTERACTION AND ARTIFICIAL INTELLIGENCE, VRHCIAI, 2022, : 232 - 237
  • [22] Monte Carlo and Temporal Difference Methods in Reinforcement Learning
    Han, Isaac
    Oh, Seungwon
    Jung, Hoyoun
    Chung, Insik
    Kim, Kyung-Joong
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2023, 18 (04) : 64 - 65
  • [23] The Misbehavior of Reinforcement Learning
    Mongillo, Gianluigi
    Shteingart, Hanan
    Loewenstein, Yonatan
    PROCEEDINGS OF THE IEEE, 2014, 102 (04) : 528 - 541
  • [24] Machine Learning Interpretability: A Survey on Methods and Metrics
    Carvalho, Diogo, V
    Pereira, Eduardo M.
    Cardoso, Jaime S.
    ELECTRONICS, 2019, 8 (08)
  • [25] Machine Learning Methods for Weather Forecasting: A Survey
    Zhang, Huijun
    Liu, Yaxin
    Zhang, Chongyu
    Li, Ningyun
    ATMOSPHERE, 2025, 16 (01)
  • [26] Bayesian Nonparametric Methods for Partially-Observable Reinforcement Learning
    Doshi-Velez, Finale
    Pfau, David
    Wood, Frank
    Roy, Nicholas
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (02) : 394 - 407
  • [27] Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics
    Mosavi, Amirhosein
    Faghan, Yaser
    Ghamisi, Pedram
    Puhong Duan
    Ardabili, Sina Faizollahzadeh
    Salwana, Ely
    Band, Shahab S.
    MATHEMATICS, 2020, 8 (10)
  • [28] A tutorial on optimal control and reinforcement learning methods for quantum technologies
    Giannelli, Luigi
    Sgroi, Sofia
    Brown, Jonathon
    Paraoanu, Gheorghe Sorin
    Paternostro, Mauro
    Paladino, Elisabetta
    Falci, Giuseppe
    PHYSICS LETTERS A, 2022, 434
  • [29] A Survey on Multi-Agent Reinforcement Learning Methods for Vehicular Networks
    Althamary, Ibrahim
    Huang, Chih-Wei
    Lin, Phone
    2019 15TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2019, : 1154 - 1159
  • [30] Survey of Deep Reinforcement Learning Based on Value Function and Policy Gradient
    Liu J.-W.
    Gao F.
    Luo X.-L.
    Jisuanji Xuebao/Chinese Journal of Computers, 2019, 42 (06): : 1406 - 1438