Spectrum unfolding in X-ray spectrometry using the maximum entropy method

被引:6
|
作者
Fernandez, Jorge E. [1 ]
Scot, Viviana [1 ]
Di Giulio, Eugenio [1 ]
机构
[1] Alma Mater Studiorum Univ Bologna, Lab Montecuccolino, Dept Ind Engn, I-40136 Bologna, Italy
关键词
X-ray spectrum unfolding; Detector response function; Maximum entropy technique; Inverse problem; X-ray spectrometry; CODE;
D O I
10.1016/j.radphyschem.2012.12.026
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The solution of the unfolding problem is an ever-present issue in X-ray spectrometry. The maximum entropy technique solves this problem by taking advantage of some known a priori physical information and by ensuring an outcome with only positive values. This method is implemented in MAXED (MAXimum Entropy Deconvolution), a software code contained in the package UMG (Unfolding with MAXED and GRAVEL) developed at PTB and distributed by NEA Data Bank. This package contains also the code GRAVEL (used to estimate the precision of the solution). This article introduces the new code UMESTRAT (Unfolding Maximum Entropy STRATegy) which applies a semi-automatic strategy to solve the unfolding problem by using a suitable combination of MAXED and GRAVEL for applications in X-ray spectrometry. Some examples of the use of UMESTRAT are shown, demonstrating its capability to remove detector artifacts from the measured spectrum consistently with the model used for the detector response function (DRF). (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:154 / 157
页数:4
相关论文
共 50 条
  • [31] Is Scanning Electron Microscopy/Energy Dispersive X-ray Spectrometry (SEM/EDS) Quantitative?
    Newbury, Dale E.
    Ritchie, Nicholas W. M.
    SCANNING, 2013, 35 (03) : 141 - 168
  • [32] Development of Large Bismuth Absorbers for Magnetic Calorimeters Applied to Hard X-ray Spectrometry
    M. Rodrigues
    M. Loidl
    C. Pies
    A. Fleischmann
    C. Enss
    Journal of Low Temperature Physics, 2014, 176 : 610 - 616
  • [33] Development of low-energy X-ray spectrometry at the Laboratoire National Henri Becquerel
    Lepy, M. C.
    Plagnard, J.
    REVISTA MEXICANA DE FISICA, 2007, 53 (03) : 68 - 73
  • [34] Uncertainty Quantification of Density Reconstruction Using MCMC Method in High-Energy X-ray Radiography
    Li, Xinge
    Xu, Haibo
    Zheng, Na
    Jia, Qinggang
    Gu, Tongxiang
    Wei, Suhua
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 27 (05) : 1485 - 1504
  • [35] Development of a reconstruction methodology for the X-Ray spectrum of a medical LinAc positioning flat panel
    Juste, Belen
    Morato, Sergio
    Miro, Rafael
    Isabel Prieto, Ana
    Verdu, Gumersindo
    Genoves, Rafael
    Gimeno, Jose
    RADIATION PHYSICS AND CHEMISTRY, 2020, 167 (167)
  • [36] Bayesian multiresolution method for local X-ray tomography in dental radiology
    Niinimaki, Kati
    Siltanen, Samuli
    Kolehmainen, Ville
    COMPUTATIONAL IMAGING VII, 2009, 7246
  • [37] Reference-free Characterization Of Semiconductor Surface Contamination And Nano layers By X-Ray Spectrometry
    Beckhoff, B.
    Fliegauf, R.
    Hoenicke, P.
    Kolbe, M.
    Mueller, M.
    Pollakowski, B.
    Reinhardt, F.
    Weser, J.
    Ulm, G.
    FRONTIERS OF CHARACTERIZATION AND METROLOGY FOR NANOELECTRONICS: 2009, 2009, 1173 : 198 - 202
  • [38] Determination of the thickness of polycrystalline thin films by using X-ray methods
    Danis, S.
    Matej, Z.
    Matejova, L.
    Krupka, M.
    THIN SOLID FILMS, 2015, 591 : 215 - 218
  • [39] Precision radiotherapy using monochromatic inverse Compton x-ray sources
    Simiele, Eric A.
    Breitkreutz, Dylan Y.
    Capaldi, Dante P., I
    Liu, Wu
    Bush, Karl K.
    Skinner, Lawrie B.
    MEDICAL PHYSICS, 2021, 48 (01) : 366 - 375
  • [40] Three-dimensional density measurements of ultra low density materials by X-ray scatter using confocal micro X-ray fluorescence spectroscopy
    Patterson, Brian M.
    Obrey, Kimberly A. DeFriend
    Hamilton, Christopher E.
    Havrilla, George J.
    X-RAY SPECTROMETRY, 2012, 41 (04) : 253 - 258