Multicore chalcogenide photonic crystal fibers for large mode area and mode shaping

被引:7
|
作者
Yi, Changshen [1 ]
Zhang, Peiqing [1 ,2 ]
Dai, Shixun [1 ]
Wang, Xunsi [1 ]
Wu, Yehao [1 ]
Xu, Tiefeng [1 ]
Nie, Qiuhua [1 ]
机构
[1] Ningbo Univ, Infrared Mat & Devices Lab, Ningbo 315211, Zhejiang, Peoples R China
[2] Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Multicore photonic crystal fiber; Phase locking; Mode shaping; Chalcogenide glasses; PHASE SUPERMODE SELECTION; LASER; BEAM; LOCKING; DESIGN;
D O I
10.1016/j.optcom.2013.08.080
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Phase locking and mode shaping in multicore Ge20Sb15S65 chalcogenide photonic crystal fibers are proposed and demonstrated. By manipulating the geometrical structure of the fibers, a large mode area of 1962 mu m(2) resulting from in-phase supermodes and equal amplitudes was obtained, which can significantly reduce the nonlinear damage in chalcogenide fibers in the infrared spectrum. With the coherent beam combining technology of multicore photonic crystal fibers, the far-field combining beam exhibits high brightness and high beam quality. Calculations show that with good phase locking and mode shaping, a seven-core photonic crystal fiber can achieve 49 times enhanced intensity compared with single-core fibers. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:270 / 274
页数:5
相关论文
共 50 条
  • [21] Experimental investigations of bending loss oscillations in large mode area photonic crystal fibers
    Martynkien, T.
    Olszewski, J.
    Szpulak, M.
    Golojuch, G.
    Urbanczyk, W.
    Nasilowski, T.
    Berghmans, F.
    Thienpont, H.
    OPTICS EXPRESS, 2007, 15 (21): : 13547 - 13556
  • [22] Coupling Loss From Free Space to Large Mode Area Photonic Crystal Fibers
    Nahar, Niru K.
    Rojas, Roberto G.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2008, 26 (21-24) : 3669 - 3676
  • [23] Degenerate four wave mixing in large mode area hybrid photonic crystal fibers
    Petersen, Sidsel R.
    Alkeskjold, Thomas T.
    Laegsgaard, Jesper
    OPTICS EXPRESS, 2013, 21 (15): : 18111 - 18124
  • [24] Research Progress on Ytterbium-Doped Large Mode Area Photonic Crystal Fibers
    Yu Chunlei
    Meng, Wang
    Feng Suya
    Wang Shikai
    Fan, Wang
    Lou Fengguang
    Lei, Zhang
    Chen Danping
    Hu Lili
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (17)
  • [25] Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers
    Petersen, Christian Rosenberg
    Engelsholm, Rasmus D.
    Markos, Christos
    Brilland, Laurent
    Caillaud, Celine
    Troles, Johann
    Bang, Ole
    OPTICS EXPRESS, 2017, 25 (13): : 15336 - 15347
  • [26] Design of Single-Mode Single-Polarization Large-Mode-Area Multicore Fibers
    Rashidi, Kamyar
    Fathi, Davood
    Maleki, Javad
    Taleb, Hussein
    Mirjalili, Seyed Mohammad
    Abbott, Derek
    MICROMACHINES, 2023, 14 (10)
  • [27] Novel large mode area photonic crystal fibers with selectively material-filled structure
    Li, Jianhua
    Wang, Jingyuan
    Cheng, Yan
    Wang, Rong
    Zhang, Baofu
    Wang, Huali
    OPTICS AND LASER TECHNOLOGY, 2013, 48 : 375 - 380
  • [28] Micro-Structured Photonic Crystal Fibers with Large Mode Area and High Negative Dispersion
    Hai, Nguyen Hoang
    Namihira, Y.
    Kaijage, Shubi
    AOE 2007: ASIA OPTICAL FIBER COMMUNICATION & OPTOELECTRONIC EXPOSITION & CONFERENCE, CONFERENCE PROCEEDINGS, 2008, : 388 - 390
  • [29] Reduced microdeformation attenuation in large-mode-area photonic crystal fibers for visible applications
    Nielsen, MD
    Mortensen, NA
    Folkenberg, JR
    OPTICS LETTERS, 2003, 28 (18) : 1645 - 1647
  • [30] Supercontinuum generation in large-mode-area photonic crystal fibers for coherent Raman microspectroscopy
    Shen, Yujie
    Voronin, Alexander A.
    Zheltikov, Aleksei M.
    O'Connor, Sean P.
    Yakovlev, Vladislav V.
    Sokolov, Alexei V.
    Scully, Marlan O.
    FRONTIERS IN ULTRAFAST OPTICS: BIOMEDICAL, SCIENTIFIC, AND INDUSTRIAL APPLICATIONS XVIII, 2018, 10522