Lower bound for the blow-up time for some nonlinear parabolic equations

被引:7
|
作者
Chen, Wenhui [1 ]
Liu, Yan [1 ]
机构
[1] Guangdong Univ Finance, Dept Appl Math, Guangzhou 510521, Guangdong, Peoples R China
来源
BOUNDARY VALUE PROBLEMS | 2016年
基金
中国国家自然科学基金;
关键词
lower bound; blow-up time; nonlinear parabolic problems; HEAT-EQUATION;
D O I
10.1186/s13661-016-0669-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the blow-up phenomenon for some nonlinear parabolic problems. Using the technique of differential inequalities, the lower bound for the blow-up time is determined if a blow-up does really occur. Our result is obtained in a bounded domain Omega is an element of R-N for any N >= 3.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] An Explicit Lower Bound for Blow Up Time in a Class of Nonlinear Wave Equations with Nonlinear Damping and Source Terms
    Peng, Xiao-ming
    Shang, Ya-dong
    Wang, Xue-qin
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2021, 37 (01): : 148 - 154
  • [42] An Explicit Lower Bound for Blow Up Time in a Class of Nonlinear Wave Equations with Nonlinear Damping and Source Terms
    Xiao-ming Peng
    Ya-dong Shang
    Xue-qin Wang
    Acta Mathematicae Applicatae Sinica, English Series, 2021, 37 : 148 - 154
  • [43] Blow-up phenomena for some nonlinear parabolic problems under mixed boundary conditions
    Li, Yuanfei
    Liu, Yan
    Lin, Changhao
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) : 3815 - 3823
  • [44] BLOW-UP AND GLOBAL SOLUTIONS FOR SOME PARABOLIC SYSTEMS UNDER NONLINEAR BOUNDARY CONDITIONS
    Guo, Limin
    Liu, Lishan
    Wu, Yonghong
    Zou, Yumei
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (04) : 1017 - 1029
  • [45] Blow-up phenomena for some nonlinear parabolic problems under Robin boundary conditions
    Li, Yuanfei
    Liu, Yan
    Xiao, Shengzhong
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (11-12) : 3065 - 3069
  • [46] Blow-up time estimates and simultaneous blow-up of solutions in nonlinear diffusion problems
    Liu, Bingchen
    Wu, Guicheng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (02) : 597 - 614
  • [47] Lower bounds of the blow-up time for reactions
    Vlamos, Panayiotis
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2008, 11 (01) : 67 - 75
  • [48] Complete blow-up of solutions for degenerate semilinear parabolic equations
    Chan, CY
    Chan, WY
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2003, 10 (1-3): : 411 - 415
  • [49] Pointwise bounds and blow-up for nonlinear fractional parabolic inequalities
    Taliaferro, Steven D.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 133 : 287 - 328
  • [50] Global existence and blow-up analysis for parabolic equations with nonlocal source and nonlinear boundary conditions
    Wei Kou
    Juntang Ding
    Boundary Value Problems, 2020