Lower bound for the blow-up time for some nonlinear parabolic equations

被引:7
作者
Chen, Wenhui [1 ]
Liu, Yan [1 ]
机构
[1] Guangdong Univ Finance, Dept Appl Math, Guangzhou 510521, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
lower bound; blow-up time; nonlinear parabolic problems; HEAT-EQUATION;
D O I
10.1186/s13661-016-0669-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the blow-up phenomenon for some nonlinear parabolic problems. Using the technique of differential inequalities, the lower bound for the blow-up time is determined if a blow-up does really occur. Our result is obtained in a bounded domain Omega is an element of R-N for any N >= 3.
引用
收藏
页数:6
相关论文
共 18 条
[1]   Bounds for the blowup time of the solutions to quasi-linear parabolic problems [J].
Bao, Aiguo ;
Song, Xianfa .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (01) :115-123
[2]   Global and blow-up solutions for nonlinear parabolic equations with Robin boundary conditions [J].
Ding, Juntang .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 65 (11) :1808-1822
[3]   Blow-up phenomena for a class of quasilinear parabolic problems under Robin boundary condition [J].
Enache, Cristian .
APPLIED MATHEMATICS LETTERS, 2011, 24 (03) :288-292
[4]  
GILBARG D., 2000, Elliptic Partial Differential Equations of Second Order, V2nd
[5]  
Li HX, 2014, ELECTRON J DIFFER EQ
[6]   Blow-up phenomena for some nonlinear parabolic problems under mixed boundary conditions [J].
Li, Yuanfei ;
Liu, Yan ;
Lin, Changhao .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) :3815-3823
[7]  
Liu DM, 2012, ACTA MATH SCI, V32, P1206
[8]   Blow-up phenomena for some nonlinear parabolic problems [J].
Payne, L. E. ;
Philippin, G. A. ;
Schaefer, P. W. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (10) :3495-3502
[9]   Bounds for blow-up time in nonlinear parabolic problems [J].
Payne, L. E. ;
Philippin, G. A. ;
Schaefer, P. W. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (01) :438-447
[10]   Lower bounds for the blow-up time in a temperature dependent Navier-Stokes flow [J].
Payne, L. E. ;
Song, J. C. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (01) :371-376