Particle identification with neural networks using a rotational invariant moment representation

被引:1
|
作者
Sinkus, R
Voss, T
机构
[1] TEL AVIV UNIV,RAYMOND & BEVERLY SACKLER FAC EXACT SCI,SCH PHYS & ASTRON,IL-69978 TEL AVIV,ISRAEL
[2] DESY,D-2000 HAMBURG,GERMANY
关键词
D O I
10.1016/S0168-9002(97)00070-3
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A feed-forward neural network is used to identify electromagnetic particles based upon their showering properties within a segmented calorimeter. The novel feature is the expansion of the energy distribution in terms of moments of the so-called Zernike functions which are invariant under rotation. The multidimensional input distribution for the neural network is transformed via a principle component analysis and rescaled by its respective variances to ensure input values of the order of one. This results is a better performance in identifying and separating electromagnetic from hadronic particles, especially at low energies.
引用
收藏
页码:160 / 162
页数:3
相关论文
共 50 条
  • [1] Particle identification with neural networks using a rotational invariant moment representation
    Sinkus, R
    Voss, T
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1997, 391 (02): : 360 - 368
  • [2] Particle identification with neural networks using a rotational invariant moment representation
    Tel-Aviv Univ, Tel-Aviv, Israel
    Nucl Instrum Methods Phys Res Sect A, 2 (360-368):
  • [3] Representation theory and invariant neural networks
    Wood, J
    ShaweTaylor, J
    DISCRETE APPLIED MATHEMATICS, 1996, 69 (1-2) : 33 - 60
  • [4] Particle identification at DO using neural networks
    Chakraborty, D
    ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH, 2001, 583 : 92 - 94
  • [5] Particle identification using artificial neural networks at BESⅢ
    秦纲
    吕军光
    何康林
    边渐鸣
    曹国富
    邓子艳
    何苗
    黄彬
    季晓斌
    李刚
    李海波
    李卫东
    刘春秀
    刘怀民
    马秋梅
    马想
    冒亚军
    毛泽普
    莫晓虎
    邱进发
    孙胜森
    孙永昭
    王纪科
    王亮亮
    文硕频
    伍灵慧
    谢宇广
    尤郑昀
    杨明
    俞国威
    苑长征
    袁野
    臧石磊
    张长春
    张建勇
    张令
    张学尧
    张瑶
    朱永生
    邹佳恒
    中国物理C, 2008, (01) : 1 - 8
  • [6] Particle identification using artificial neural networks at BESIII
    Qin Gang
    Lue Jun-Guang
    He Kang-Lin
    Bian Jian-Ming
    Cao Guo-Fu
    Deng Zi-Yan
    He Miao
    Huang Bin
    Ji Xiao-Bin
    Li Gang
    Li Hai-Bo
    Li Wei-Dong
    Liu Chun-Xiu
    Liu Huai-Min
    Ma Qiu-Mei
    Ma Xiang
    Mao Ya-Jun
    Mao Ze-Pu
    Mo Xiao-Hu
    Qiu Jin-Fa
    Sun Sheng-Sen
    Sun Yong-Zhao
    Wang Ji-Ke
    Wang Liang-Liang
    Wen Shuo-Pin
    Wu Ling-Hui
    Xie Yu-Guang
    You Zheng-Yun
    Yang Ming
    Yu Guo-Wei
    Yuan Chang-Zheng
    Yuan Ye
    Zang Shi-Lei
    Zhang Chang-Chun
    Zhang Jian-Yong
    Zhang Ling
    Zhang Xue-Yao
    Zhang Yao
    Zhu Yong-Sheng
    Zou Jia-Heng
    CHINESE PHYSICS C, 2008, 32 (01) : 1 - 8
  • [7] LEARNING AN MR ACQUISITION-INVARIANT REPRESENTATION USING SIAMESE NEURAL NETWORKS
    Kouw, W. M.
    Loog, M.
    Bartels, L. W.
    Mendrik, A. M.
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 364 - 367
  • [8] Invariant image recognition by a neural networks and modified moment invariants
    Wang, DY
    Xie, WX
    ELECTRONIC IMAGING AND MULTIMEDIA SYSTEMS, 1996, 2898 : 217 - 223
  • [9] Permutation-Invariant Representation of Neural Networks with Neuron Embeddings
    Zhou, Ryan
    Muise, Christian
    Hu, Ting
    GENETIC PROGRAMMING (EUROGP 2022), 2022, : 294 - 308
  • [10] Automatic seal imprint identification using moment invariant
    Nanjing Univ of Science and, Technology, Nanjing, China
    Tien Tzu Hsueh Pao, 4 (100-103):