Modified NSGA-II Based Interactive Algorithm for Linear Multiobjective Bilevel Programs

被引:3
作者
Li, Hong [1 ]
Zhang, Li [1 ]
Li, Hecheng [2 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
[2] Qinghai Normal Univ, Sch Math & Stat, Xining 810008, Peoples R China
来源
2019 15TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2019) | 2019年
基金
中国国家自然科学基金;
关键词
Multiobjective bilevel program; Differential evolution; Pareto optimality; NSGA-II; OPTIMIZATION;
D O I
10.1109/CIS.2019.00095
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An interactive algorithm based on a modified NSGA-II is presented for linear multiobjective bilevel programs (LMOBLPs). The LMOBLP is converted into a linear multi-objective single-level implicit programming, when the lower-level multiobjective optimization problem (MOP) becomes a single-objective linear programming (LP) through an adaptive weighted sum approach. In the interactive algorithm, every individual in the population is updated according to the modified NSGA-II, while the related lower-level decision variable is obtained afterwards through the resolution of the lower-level linear scalarization problem for every given individual in the population. Some illustrative numerical instances are constructed to show that the interactive algorithm can reach a good convergence towards the entire Pareto front (PF).
引用
收藏
页码:406 / 410
页数:5
相关论文
共 15 条
[1]   An algorithm based on particle swarm optimization for multiobjective bilevel linear problems [J].
Alves, Maria Joao ;
Costa, Joao Paulo .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 :547-561
[2]  
Alves MJ, 2012, LECT NOTES COMPUT SC, V7461, P332, DOI 10.1007/978-3-642-32650-9_35
[3]   Computing the Pareto frontier of a bi-objective bi-level linear problem using a multiobjective mixed-integer programming algorithm [J].
Alves, Maria Joao ;
Dempe, Stephan ;
Judice, Joaquim J. .
OPTIMIZATION, 2012, 61 (03) :335-358
[4]   Linear bilevel programs with multiple objectives at the upper level [J].
Calvete, Herminia I. ;
Gale, Carmen .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (04) :950-959
[5]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[6]   Multiobjective bilevel optimization [J].
Eichfelder, Gabriele .
MATHEMATICAL PROGRAMMING, 2010, 123 (02) :419-449
[7]  
Gupta A, 2015, IEEE C EVOL COMPUTAT, P1636, DOI 10.1109/CEC.2015.7257083
[8]  
Li H., 2014, Math. Probl. Eng., V2014, P1
[9]   Multiobjective differential evolution algorithm based on decomposition for a type of multiobjective bilevel programming problems [J].
Li, Hong ;
Zhang, Qingfu ;
Chen, Qin ;
Zhang, Li ;
Jiao, Yong-Chang .
KNOWLEDGE-BASED SYSTEMS, 2016, 107 :271-288
[10]   Multilevel decision-making: A survey [J].
Lu, Jie ;
Han, Jialin ;
Hu, Yaoguang ;
Zhang, Guangquan .
INFORMATION SCIENCES, 2016, 346 :463-487