Metabolic Engineering of Pseudomonas putida KT2440 for the Production of para-Hydroxy Benzoic Acid

被引:48
作者
Yu, Shiqin [1 ,2 ]
Plan, Manuel R. [3 ,4 ]
Winter, Gal [1 ,2 ,5 ]
Kromer, Jens O. [1 ,2 ]
机构
[1] Univ Queensland, Ctr Microbial Electrochem Syst CEMES, Brisbane, Qld, Australia
[2] Univ Queensland, Adv Water Management Ctr, Brisbane, Qld, Australia
[3] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld, Australia
[4] Univ Queensland, Metabol Australia Queensland Node, Brisbane, Qld, Australia
[5] Univ New England, Sch Sci & Technol, Armidale, NSW, Australia
来源
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY | 2016年 / 4卷
基金
澳大利亚研究理事会;
关键词
ENTNER-DOUDOROFF PATHWAY; SHIKIMATE PATHWAY; ESCHERICHIA-COLI; CHORISMATE LYASE; MUCONIC ACID; PHENYLALANINE; GLUCOSE; SITES; BIOPRODUCTION; AROMATICS;
D O I
10.3389/fbioe.2016.00090
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
para-Hydroxy benzoic acid (PHBA) is the key component for preparing parabens, a common preservatives in food, drugs, and personal care products, as well as high-performance bioplastics such as liquid crystal polymers. Pseudomonas putida KT2440 was engineered to produce PHBA from glucose via the shikimate pathway intermediate chorismate. To obtain the PHBA production strain, chorismate lyase UbiC from Escherichia coli and a feedback resistant 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase encoded by gene aroG(D146N) were overexpressed individually and simultaneously. In addition, genes related to product degradation (pobA) or competing for the precursor chorismate (pheA and trpE) were deleted from the genome. To further improve PHBA production, the glucose metabolism repressor hexR was knocked out in order to increase erythrose 4-phosphate and NADPH supply. The best strain achieved a maximum titer of 1.73 g L-1 and a carbon yield of 18.1% (C-mol C-mol(-1)) in a non-optimized fed-batch fermentation. This is to date the highest PHBA concentration produced by P. putida using a chorismate lyase.
引用
收藏
页数:10
相关论文
共 55 条
  • [1] [Anonymous], 2011, THERMOPLASTIC MAT PR
  • [2] The homogentisate pathway:: A central catabolic pathway involved in the degradation of L-phenylalanine, L-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida
    Arias-Barrau, E
    Olivera, ER
    Luengo, JM
    Fernández, C
    Galán, B
    García, JL
    Díaz, E
    Miñambres, B
    [J]. JOURNAL OF BACTERIOLOGY, 2004, 186 (15) : 5062 - 5077
  • [3] Production of para-aminobenzoic acid from different carbon-sources in engineered Saccharomyces cerevisiae
    Averesch, Nils J. H.
    Winter, Gal
    Kromer, Jens O.
    [J]. MICROBIAL CELL FACTORIES, 2016, 15
  • [4] Microbial synthesis of p-hydroxybenzoic acid from glucose
    Barker, JL
    Frost, JW
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2001, 76 (04) : 376 - 390
  • [5] THE SHIKIMATE PATHWAY - A METABOLIC TREE WITH MANY BRANCHES
    BENTLEY, R
    [J]. CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, 1990, 25 (05) : 307 - 384
  • [6] Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase
    Blank, Lars M.
    Ionidis, Georgios
    Ebert, Birgitta E.
    Buehler, Bruno
    Schmid, Andreas
    [J]. FEBS JOURNAL, 2008, 275 (20) : 5173 - 5190
  • [7] Dynamic modeling of the central carbon metabolism of Escherichia coli
    Chassagnole, C
    Noisommit-Rizzi, N
    Schmid, JW
    Mauch, K
    Reuss, M
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2002, 79 (01) : 53 - 73
  • [8] The Entner-Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress
    Chavarria, Max
    Nikel, Pablo I.
    Perez-Pantoja, Danilo
    Lorenzo, Victor
    [J]. ENVIRONMENTAL MICROBIOLOGY, 2013, 15 (06) : 1772 - 1785
  • [9] Mini-Tn7 insertion in bacteria with single attTn7 sites:: example Pseudomonas aeruginosa
    Choi, Kyoung-Hee
    Schweizer, Herbert P.
    [J]. NATURE PROTOCOLS, 2006, 1 (01) : 153 - 161
  • [10] Metabolic engineering of muconic acid production in Saccharomyces cerevisiae
    Curran, Kathleen A.
    Leavitt, Johnm.
    Karim, AshtyS.
    Alper, Hal S.
    [J]. METABOLIC ENGINEERING, 2013, 15 : 55 - 66