The five-dimensional complete left-symmetric algebra structures compatible with an Abelian Lie algebra structure

被引:5
作者
Dekimpe, K
Igodt, P
Ongenae, V
机构
[1] Katholieke Universiteit Leuven, B-8500 Kortrijk, Campus Kortrijk
关键词
D O I
10.1016/S0024-3795(96)00591-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The classification of five-dimensional complete left-symmetric algebras is known to be a hard problem. In this paper we establish an explicit classification of the five-dimensional complete left-symmetric algebras over R, having an abelian associated Lie algebra. A detailed list of all possible isomorphism types is presented. (C) 1997 Elsevier Science Inc.
引用
收藏
页码:349 / 375
页数:27
相关论文
共 9 条
[1]  
[Anonymous], 1987, GEOMETRY
[2]  
BENOIST Y, 1995, J DIFFER GEOM, V41, P21
[3]   MODULES FOR CERTAIN LIE-ALGEBRAS OF MAXIMAL CLASS [J].
BURDE, D ;
GRUNEWALD, F .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1995, 99 (03) :239-254
[4]  
Humphreys JE., 1980, INTRO LIE ALGEBRAS R
[5]  
Jacobson N., 1979, Lie algebras
[6]  
KIM H, 1986, J DIFFER GEOM, V24, P373
[7]  
KIM H, 1987, ALGEBRAS GROUPS GEOM, V4, P73
[8]   FUNDAMENTAL GROUPS OF COMPLETE AFFINELY FLAT MANIFOLDS [J].
MILNOR, J .
ADVANCES IN MATHEMATICS, 1977, 25 (02) :178-187
[9]   THE STRUCTURE OF COMPLETE LEFT-SYMMETRICAL ALGEBRAS [J].
SEGAL, D .
MATHEMATISCHE ANNALEN, 1992, 293 (03) :569-578