Behavior and stability of positive solutions of nonlinear elliptic boundary value problems arising in population dynamics

被引:19
|
作者
Umezu, K [1 ]
机构
[1] Maebashi Inst Technol, Maebashi, Gumma 3710816, Japan
关键词
semilinear elliptic problems; nonlinear boundary conditions; behavior of positive solutions; Lyapunov stability; super-sub-solutions; population dynamics;
D O I
10.1016/S0362-546X(01)00142-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The behavior and stability of positive solutions of nonlinear elliptic boundary value problems arising in population dynamics were analyzed. A semilinear elliptic problem with nonlinear boundary conditions was considered. The existence of the steady state of the initial value problem was also verified.
引用
收藏
页码:817 / 840
页数:24
相关论文
共 50 条
  • [21] Multiple solutions for nonlinear boundary value problems of Kirchhoff type on a double phase setting
    Fiscella, Alessio
    Marino, Greta
    Pinamonti, Andrea
    Verzellesi, Simone
    REVISTA MATEMATICA COMPLUTENSE, 2024, 37 (01): : 205 - 236
  • [22] Multiple solutions for nonlinear boundary value problems of Kirchhoff type on a double phase setting
    Alessio Fiscella
    Greta Marino
    Andrea Pinamonti
    Simone Verzellesi
    Revista Matemática Complutense, 2024, 37 : 205 - 236
  • [23] A new generalized approach to study the existence of solutions of nonlinear fractional boundary value problems
    Batool, Asmat
    Talib, Imran
    Bourguiba, Rym
    Suwan, Iyad
    Abdeljawad, Thabet
    Riaz, Muhammad Bilal
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (06) : 2145 - 2154
  • [24] Uniqueness implies existence of solutions for nonlinear focal-like boundary value problems
    Ehme, Jeffrey
    Lanz, Aprillya
    APPLIED MATHEMATICS LETTERS, 2009, 22 (09) : 1325 - 1329
  • [25] Weak Solutions for Nonlinear Neumann Boundary Value Problems with p(x)-Laplacian Operators
    Kong, Lingju
    TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (06): : 1355 - 1379
  • [26] A nonlinear boundary value problem arising in growing cell populations
    Latrach, K
    Jeribi, A
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (07) : 843 - 862
  • [27] Nonlinear boundary value problems and linking number
    Tuomela, J
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 45 (05) : 577 - 595
  • [28] On the number of solutions to semilinear boundary value problems
    Kunze, M
    Ortega, R
    ADVANCED NONLINEAR STUDIES, 2004, 4 (03) : 237 - 249
  • [29] Open boundary conditions for nonlinear initial boundary value problems
    Nordstrom, Jan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 530
  • [30] kth Order convergence for semilinear elliptic boundary value problems
    Wang, Peiguang
    Li, Ping
    Wu, Yonghong
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 214 (01) : 4 - 9