Investigation of the performance of real-time BDS-only precise point positioning using the IGS real-time service

被引:46
|
作者
Wang, Liang [1 ,2 ]
Li, Zishen [1 ]
Ge, Maorong [3 ]
Neitzel, Frank [4 ]
Wang, Xiaoming [1 ]
Yuan, Hong [1 ]
机构
[1] Chinese Acad Sci, Acad Optoelect, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
[3] German Res Ctr Geosci, D-14473 Potsdam, Germany
[4] Tech Univ Berlin, Inst Geodesy & Geoinformat Sci, Str 17 Juni, D-10623 Berlin, Germany
基金
中国国家自然科学基金;
关键词
GNSS; BDS; Precise point positioning; Real-time PPP; Real-time service; CLK93; MULTI-GNSS; BEIDOU; GPS; PPP;
D O I
10.1007/s10291-019-0856-9
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
With the development of China's BeiDou Navigation Satellite System (BDS) and the operation of the real-time service (RTS) of the International GNSS service, BDS real-time precise point positioning (RTPPP) has become possible. In this contribution, the RTS product CLK93 is employed for BDS RTPPP, and its quality for BDS orbit and clock corrections is first assessed by availability and accuracy over a period of 24days. Following this, the convergence time and positioning accuracy of BDS-only RTPPP are evaluated by performing a 24-day processing with ten stations from the multi-GNSS experiment (MGEX) network. Finally, a real-time kinematic test is conducted in an urban environment to further investigate the performance of BDS-only RTPPP. Experimental results show that the average availabilities of the CLK93 corrections are approximately 95% for the inclined geosynchronous satellite orbit (IGSO) satellites, 90% for the medium earth orbit (MEO) satellites and 65% for the geostationary earth orbit satellites. The mean accuracy of the real-time corrections, which is represented by the signal-in-space ranging error (SISRE)value, is 10cm for the IGSO and MEO satellites. Furthermore, the average positioning accuracies in the north, east and up components of the ten MGEX stations are approximately 1.7, 2.2 and 2.6cm, respectively, for the static mode and 10.3, 15.6 and 29.2cm, respectively, for the kinematic mode. In addition, the average time required to converge to a 20-cm accuracy in the three-dimensional component is approximately 100 and 136min for BDS-only RTPPP in the static and kinematic modes, respectively. In addition, the positioning accuracy of BDS-only RTPPP in the real-time kinematic test is 0.86, 0.92 and 1.68m in the east, north and up components, respectively, for the whole solutions during the test, which is obviously worse than that obtained by GPS-only RTPPP.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Performance analysis of real-time precise point positioning with GPS and BDS state space representation
    Liu, Peng
    Ling, Keck Voon
    Qin, Honglei
    Liu, Tianjun
    MEASUREMENT, 2023, 215
  • [22] BDS/GPS/Galileo Precise Point Positioning Performance Analysis of Android Smartphones Based on Real-Time Stream Data
    Li, Mengyuan
    Huang, Guanwen
    Wang, Le
    Xie, Wei
    REMOTE SENSING, 2023, 15 (12)
  • [23] Performance Evaluation of Real-Time Precise Point Positioning Method
    Alcay, Salih
    Turgut, Muzeyyen
    WORLD MULTIDISCIPLINARY EARTH SCIENCES SYMPOSIUM (WMESS 2017), 2017, 95
  • [24] Performance of BDS-2/3, GPS, and Galileo Time Transfer with Real-Time Single-Frequency Precise Point Positioning
    Xiao, Xia
    Shen, Fei
    Lu, Xiaochun
    Shen, Pengli
    Ge, Yulong
    REMOTE SENSING, 2021, 13 (21)
  • [25] BDS/GNSS Real-Time Kinematic Precise Point Positioning with Un-differenced Ambiguity Resolution
    Qu, Lizhong
    Zhao, Qile
    Guo, Jing
    Wang, Guangxing
    Guo, Xiangxin
    Zhang, Qiang
    Jiang, Kecai
    Luo, Liang
    CHINA SATELLITE NAVIGATION CONFERENCE (CSNC) 2015 PROCEEDINGS, VOL III, 2015, 342 : 13 - 29
  • [26] Performance of real-time undifferenced precise positioning assisted by remote IGS multi-GNSS stations
    Liu, Zhiqiang
    Yue, Dongjie
    Huang, Zhangyu
    Chen, Jian
    GPS SOLUTIONS, 2020, 24 (02)
  • [27] Performance comparison of Precise Point Positioning using real-time oriented GNSS products
    Lopez, Ernesto M.
    Rodriguez, Santiago
    Garcia, Javier G.
    Muravchik, Carlos H.
    2019 ARGENTINE CONFERENCE ON ELECTRONICS (CAE), 2019, : 52 - 57
  • [28] Weighting of Multi-GNSS Observations in Real-Time Precise Point Positioning
    Kazmierski, Kamil
    Hadas, Tomasz
    Sosnica, Krzysztof
    REMOTE SENSING, 2018, 10 (01)
  • [29] Real-time BDS-3 satellite clock estimation and precise point positioning using broadcast orbits
    Xie, Xin
    Zhang, Zhiyi
    Geng, Tao
    Tao, Jun
    Cheng, Lingyue
    Zhao, Qile
    ADVANCES IN SPACE RESEARCH, 2025, 75 (06) : 4490 - 4501
  • [30] Analysis on the Potential Performance of GPS and Galileo Precise Point Positioning using Simulated Real-Time Products
    Basile, Francesco
    Moore, Terry
    Hill, Chris
    JOURNAL OF NAVIGATION, 2019, 72 (01) : 19 - 33