On a coupled nonlocal nonlinear Schrodinger system

被引:6
作者
Jia-Liang Ji [1 ]
Yue Kai [1 ]
Zong-Wei Xu [2 ]
Li-Yuan Ma [3 ]
机构
[1] Shanghai Univ Engn Sci, Sch Math Phys & Stat, 333 Longteng Rd, Shanghai 201620, Peoples R China
[2] Shanghai Inst Technol, Sch Sci, 100 Haiquan Rd, Shanghai 201418, Peoples R China
[3] Zhejiang Univ Technol, Dept Appl Math, Hangzhou 310023, Peoples R China
基金
中国国家自然科学基金;
关键词
Coupled nonlocal nonlinear Schrodinger equation; Darboux transformation; Solitons; Kinks; Dynamics and interaction of solitons; DISPERSIVE DIELECTRIC FIBERS; OPTICAL SOLITON; DYNAMICS; WAVES; EQUATIONS; TRANSMISSION; PULSES;
D O I
10.1016/j.chaos.2022.112761
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, Ablowitz and Musslimani have introduced a new integrable nonlocal nonlinear Schrodinger equation. In this paper, we investigate an integrable coupled nonlocal nonlinear Schrodinger equation which can be derived from the AKNS system. The Darboux transformation is constructed for this equation. Via this Darboux transformation, we obtain its different kinds of exact solutions including soliton, kink, periodic solutions and so on. Dynamics and interactions of different kinds of soliton solutions are discussed. Finally, we compare the obtained results with standard coupled NLS equation.
引用
收藏
页数:7
相关论文
共 46 条
[1]   Integrable Nonlocal Nonlinear Equations [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
STUDIES IN APPLIED MATHEMATICS, 2017, 139 (01) :7-59
[2]   Inverse scattering transform for the integrable nonlocal nonlinear Schrodinger equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
NONLINEARITY, 2016, 29 (03) :915-946
[3]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[4]   PROPAGATION OF NONLINEAR WAVE ENVELOPES [J].
BENNEY, DJ ;
NEWELL, AC .
JOURNAL OF MATHEMATICS AND PHYSICS, 1967, 46 (02) :133-&
[5]   Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrodinger equation [J].
Gadzhimuradov, T. A. ;
Agalarov, A. M. .
PHYSICAL REVIEW A, 2016, 93 (06)
[6]   Peregrine rogue wave dynamics in the continuous nonlinear Schrodinger system with parity-time symmetric Kerr nonlinearity [J].
Gupta, Samit Kumar ;
Sarma, Amarendra K. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 36 :141-147
[7]   TRANSMISSION OF STATIONARY NONLINEAR OPTICAL PULSES IN DISPERSIVE DIELECTRIC FIBERS .1. ANOMALOUS DISPERSION [J].
HASEGAWA, A ;
TAPPERT, F .
APPLIED PHYSICS LETTERS, 1973, 23 (03) :142-144
[8]   TRANSMISSION OF STATIONARY NONLINEAR OPTICAL PULSES IN DISPERSIVE DIELECTRIC FIBERS .2. NORMAL DISPERSION [J].
HASEGAWA, A ;
TAPPERT, F .
APPLIED PHYSICS LETTERS, 1973, 23 (04) :171-172
[9]   Nonintegrable spatial discrete nonlocal nonlinear schrodinger equation [J].
Ji, Jia-Liang ;
Xu, Zong-Wei ;
Zhu, Zuo-Nong .
CHAOS, 2019, 29 (10)
[10]   The effect of coherent coupling nonlinearity on modulation instability and rogue wave excitation [J].
Jia, Heping ;
Yang, Rongcao ;
Guo, Qi ;
Christian, J. M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 108