Homoclinic orbits in three-dimensional Shilnikov-type chaotic systems

被引:3
作者
Feng Jing-Jing [1 ,2 ,3 ]
Zhang Qi-Chang [1 ,2 ]
Wang Wei [1 ,2 ]
Hao Shu-Ying [3 ]
机构
[1] Tianjin Univ, Sch Mech Engn, Tianjin Key Lab Nonlinear Dynam & Chaos Control, Tianjin 300072, Peoples R China
[2] Tianjin Univ, State Key Lab Engines, Tianjin 300072, Peoples R China
[3] Tianjin Univ Technol, Sch Mech Engn, Tianjin 300384, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
chaos; Shilnikov theorem; homoclinic orbit; Pade approximation; HETEROCLINIC ORBITS; CONSTRUCTION; ATTRACTORS; DYNAMICS; THEOREM;
D O I
10.1088/1674-1056/22/9/090503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the Pade approximant and analytic solution in the neighborhood of the initial value are introduced into the process of constructing the Shilnikov type homoclinic trajectories in three-dimensional nonlinear dynamical systems. The PID controller system with quadratic and cubic nonlinearities, the simplified solar-wind-driven-magnetosphere-ionosphere system, and the human DNA sequence system are considered. With the aid of presenting a new condition, the solutions of solving the boundary-value problems which are formulated for the trajectory and evaluating the initial amplitude values become available. At the same time, the value of the bifurcation parameter is obtained directly, which is almost consistent with the numerical result.
引用
收藏
页数:12
相关论文
共 50 条
[41]   Zero-Hopf Bifurcations in Three-Dimensional Chaotic Systems with One Stable Equilibrium [J].
Ibre, Jaume ;
Messias, Marcelo ;
Reinol, Alisson de Carvalho .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (13)
[42]   On the classification of orbits in the three-dimensional Copenhagen problem with oblate primaries [J].
Zotos, Euaggelos E. ;
Nagler, Jan .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2019, 108 :55-71
[43]   An analytical description of three-dimensional heliocentric solar sail orbits [J].
Stewart, Brian ;
Palmer, Phil ;
Roberts, Mark .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2017, 128 (01) :61-74
[44]   Sliding homoclinic orbits and chaotic dynamics in a class of 3D piecewise-linear Filippov systems [J].
Wang, Fanrui ;
Wei, Zhouchao ;
Zhang, Wei .
NONLINEAR DYNAMICS, 2024, 112 (22) :20461-20481
[45]   DISSIPATIVE SCHEMES WITH PROPERTY OF INHERITING HOMOCLINIC ORBITS FOR 2N-DIMENSIONAL HAMILTONIAN SYSTEMS [J].
杜维华 ;
黄明游 .
Numerical Mathematics A Journal of Chinese Universities(English Series), 2002, (02) :197-212
[46]   Determining the nature of orbits in a three-dimensional galaxy model hosting a BL Lacertae object [J].
Zotos, E. E. .
ASTRONOMISCHE NACHRICHTEN, 2014, 335 (08) :886-899
[47]   Nonchaotic and chaotic behavior in three-dimensional quadratic systems: Five-one conservative cases [J].
Heidel, Jack ;
Zhang, Fu .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (06) :2049-2072
[48]   Dissipative chaos, Shilnikov chaos and bursting oscillations in a three-dimensional autonomous system: theory and electronic implementation [J].
Kingni, Sifeu Takougang ;
Keuninckx, Lars ;
Woafo, Paul ;
Van der Sande, Guy ;
Danckaert, Jan .
NONLINEAR DYNAMICS, 2013, 73 (1-2) :1111-1123
[49]   The integration of three-dimensional Lotka-Volterra systems [J].
Maier, Robert S. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2158)
[50]   A multi-dimensional scheme for controlling unstable periodic orbits in chaotic systems [J].
Chakravarthy, N ;
Tsakalis, K ;
Iasemidis, LD ;
Spanias, A .
PHYSICS LETTERS A, 2006, 349 (1-4) :116-127