Homoclinic orbits in three-dimensional Shilnikov-type chaotic systems

被引:3
|
作者
Feng Jing-Jing [1 ,2 ,3 ]
Zhang Qi-Chang [1 ,2 ]
Wang Wei [1 ,2 ]
Hao Shu-Ying [3 ]
机构
[1] Tianjin Univ, Sch Mech Engn, Tianjin Key Lab Nonlinear Dynam & Chaos Control, Tianjin 300072, Peoples R China
[2] Tianjin Univ, State Key Lab Engines, Tianjin 300072, Peoples R China
[3] Tianjin Univ Technol, Sch Mech Engn, Tianjin 300384, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
chaos; Shilnikov theorem; homoclinic orbit; Pade approximation; HETEROCLINIC ORBITS; CONSTRUCTION; ATTRACTORS; DYNAMICS; THEOREM;
D O I
10.1088/1674-1056/22/9/090503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the Pade approximant and analytic solution in the neighborhood of the initial value are introduced into the process of constructing the Shilnikov type homoclinic trajectories in three-dimensional nonlinear dynamical systems. The PID controller system with quadratic and cubic nonlinearities, the simplified solar-wind-driven-magnetosphere-ionosphere system, and the human DNA sequence system are considered. With the aid of presenting a new condition, the solutions of solving the boundary-value problems which are formulated for the trajectory and evaluating the initial amplitude values become available. At the same time, the value of the bifurcation parameter is obtained directly, which is almost consistent with the numerical result.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Homoclinic orbits in three-dimensional Shilnikov-type chaotic systems
    冯晶晶
    张琪昌
    王炜
    郝淑英
    Chinese Physics B, 2013, 22 (09) : 316 - 327
  • [2] Shilnikov-type dynamics in three-dimensional piecewise smooth maps
    Roy, Indrava
    Patra, Mahashweta
    Banerjee, Soumitro
    CHAOS SOLITONS & FRACTALS, 2020, 133
  • [3] Shilnikov-type multipulse orbits and chaotic dynamics of a parametrically and externally excited rectangular thin plate
    Yao, M. H.
    Zhang, W.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (03): : 851 - 875
  • [4] Homoclinic Orbits and Entropy for Three-Dimensional Flows
    Lopez, A. M.
    Metzger, R. J.
    Morales, C. A.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2018, 30 (02) : 799 - 805
  • [5] Homoclinic Orbits and Entropy for Three-Dimensional Flows
    A. M. Lopez
    R. J. Metzger
    C. A. Morales
    Journal of Dynamics and Differential Equations, 2018, 30 : 799 - 805
  • [6] Sliding homoclinic orbits and bifurcations of three-dimensional piecewise affine systems
    Tiantian Wu
    Songmei Huan
    Xiaojuan Liu
    Nonlinear Dynamics, 2023, 111 : 9011 - 9024
  • [7] Sliding homoclinic orbits and bifurcations of three-dimensional piecewise affine systems
    Wu, Tiantian
    Huan, Songmei
    Liu, Xiaojuan
    NONLINEAR DYNAMICS, 2023, 111 (10) : 9011 - 9024
  • [8] Analytical construction of homoclinic orbits of two- and three-dimensional dynamical systems
    Mikhlin, YV
    JOURNAL OF SOUND AND VIBRATION, 2000, 230 (05) : 971 - 983
  • [9] Homoclinic orbits in three-dimensional continuous piecewise linear generalized Michelson systems
    Li, Zhengkang
    Liu, Xingbo
    CHAOS, 2022, 32 (07)
  • [10] On the existence of homoclinic orbits in some class of three-dimensional piecewise affine systems
    Chen, Yanli
    Wu, Tiantian
    Yang, Xiaosong
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (05): : 6022 - 6033