Classification of Novikov algebras

被引:31
作者
Burde, Dietrich [1 ]
de Graaf, Willem [2 ]
机构
[1] Univ Vienna, Fak Math, A-1090 Vienna, Austria
[2] Univ Trent, Dipartimento Matemat, I-38050 Trento, Italy
基金
奥地利科学基金会;
关键词
Novikov algebras; Classification; Computational methods; SOLVABLE LIE-ALGEBRAS; COMMUTATIVE ALGEBRAS;
D O I
10.1007/s00200-012-0180-x
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We describe a method for classifying the Novikov algebras with a given associated Lie algebra. Subsequently we give the classification of the Novikov algebras of dimension 3 over and , as well as the classification of the 4-dimensional Novikov algebras over whose associated Lie algebra is nilpotent. In particular this includes a list of all 4-dimensional commutative associative algebras over .
引用
收藏
页码:1 / 15
页数:15
相关论文
共 15 条
[1]  
[Anonymous], 1992, IDEALS VARIETIES ALG, DOI DOI 10.1007/978-1-4757-2181-2
[2]   DIFFERENTIAL CALCULI ON COMMUTATIVE ALGEBRAS [J].
BAEHR, HC ;
DIMAKIS, A ;
MULLERHOISSEN, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (11) :3197-3222
[3]   Transitive Novikov algebras on four-dimensional nilpotent Lie algebras [J].
Bai, CM ;
Meng, DJ .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2001, 40 (10) :1761-1768
[4]   The classification of Novikov algebras in low dimensions [J].
Bai, CM ;
Meng, DJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (08) :1581-1594
[5]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[6]  
Burde D., 2006, Cent. Eur. J. Math., V4, P323
[7]   Novikov algebras and Novikov structures on Lie algebras [J].
Burde, Dietrich ;
Dekimpe, Karel ;
Vercammen, Kim .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (01) :31-41
[8]   Novikov structures on solvable Lie algebras [J].
Burde, Dietrich ;
Dekimpe, Karel .
JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (09) :1837-1855
[9]  
Burde D, 2009, CONTEMP MATH, V491, P125
[10]  
de Graaf W. A., 2010, ARXIV10095339V1MATHR